

Oldham Council Hybrid SFRA

Volume I: User Guide Final January 2010

Oldham Council PO Box 452 Cromwell Street Oldham OL1 1WR

Structure of the Oldham SFRA

The Oldham SFRA is supplied as three Volumes, described in the table below. Readers should refer to Volume I: SFRA User Guide for guidance on how to use the information provided in the SFRA.

SFRA Volume	Title of volume	Contents
I	User Guide	Volume I has been developed to provide guidance on the use of the SFRA for Local Authority Spatial Planning, Regeneration, Development Management and Emergency Planning officers and Developers.
ΙΙ	Level 1 SFRA	Volume II has used mostly existing data to make an assessment of flood risk from all sources now and in the future and builds on the Association of Greater Manchester Authorities (AGMA) Sub-Regional SFRA. It provides evidence for LPA officers to apply the Sequential Test and identifies the need to pass the Exception Test where required.
III	Level 2 SFRA	Volume III provides evidence on a key community basis. It provides more detailed information on flood risk from the River Tame, Diggle Brook, Chew Brook and Wince Brook, the Rochdale and Huddersfield Narrow Canals and surface water. The additional detail can also inform a sequential approach to development allocation within flood risk areas and mitigation options where appropriate.

JBA Office

JBA Consulting The Brew House Wilderspool Park Greenall's Avenue Warrington WA4 6HL

JBA Project Manager

Hannah O'Callaghan

Revision History

Revision Ref / Date Issued	Amendments	Issued to
Draft v1.0 (October 2009)		Georgina Brownridge (Oldham Council), Sandrine Thomas and Sylvia Whittingham (Environment Agency)
Draft v2.0 (November 2009)	Comments from Oldham Council and the Environment Agency	Georgina Brownridge (Oldham Council), Sandrine Thomas and Sylvia Whittingham (Environment Agency)
Final (January 2010)	Comments from Oldham Council and the Environment Agency	Georgina Brownridge (Oldham Council), Sandrine Thomas and Sylvia Whittingham (Environment Agency)

Contract

This report describes work commissioned by Oldham Council, on behalf of Oldham Council, by a letter dated 20 July 2009. Oldham's representative for the contract was Georgina Brownridge. Hannah O'Callaghan and Christoff Power of JBA Consulting carried out this work.

Prepared by	Christoff Power BSC MRes Analyst
Reviewed by	Hannah O'Callaghan BSc MCIWEM Senior Flood Risk Policy Analyst
Approved by	Jonathan Cooper BEng MSc CEng MICE MCIWEM MIoD DipCD Divisional Manager

Purpose

This document has been prepared as a report for Oldham Council. JBA Consulting accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

JBA Consulting has no liability regarding the use of this report except to Oldham Council.

Acknowledgments

JBA would like to acknowledge the support of the SFRA steering group Georgina Brownridge, Paul McGrath, Graham Birch, Adele Hayes, Sue Eachus and Gary May (Oldham MBC), Sandrine Thomas, Sylvia Whittingham and Andy Cameron (Environment Agency).

We would also like to thank Neil D'Arcy at British Waterways for his contribution in understanding the risk of flooding from canals.

Copyright

© Jeremy Benn Associates Limited 2010

Carbon Footprint

A printed copy of this document will result in a carbon footprint of 437g if 100% postconsumer recycled paper is used and 556g if primary-source paper is used. These figures assume the report is printed in black and white on A4 paper and in duplex.

JBA is a carbon neutral company and the carbon emissions from our activities are offset.

Executive Summary

Introduction

Oldham Council is required to undertake a Strategic Flood Risk Assessment (SFRA) as an essential part of the pre-production/evidence gathering stage of the Local Development Framework (LDF) and in preparing their Local Development Documents (LDDs). The SFRA provides baseline information for use in the preparation of the Sustainability Appraisal (SA) of LDDs for the scoping and evaluation stages.

The requirement for and guidance on the preparation of SFRAs is outlined in Planning Policy Statement 25 Development and Flood Risk (PPS25) and its Practice Guide. This requires Local Planning Authorities (LPAs) to take a more dominant role in local flood risk management and to demonstrate that due regard has been given to the issue of flood risk at all levels of the planning process to avoid inappropriate development.

Local authority planners must demonstrate that a risk based, sequential approach has been applied in preparing development plans and that flood risk has been considered during the planning application process. This must be achieved through the application of the Sequential and Exception Test as outlined in PPS25.

By providing a central store for data, guidance and recommendations of flood risk issues at a local level, the SFRA is an important planning tool that enables the LPA to carry out the Sequential and Exception Test and to select and develop sustainable site allocations with regard to flood risk.

SFRAs can also provide a much broader and inclusive vehicle for integrated, strategic and local Flood Risk Management (FRM) assessment and delivery, by providing the linkage between Catchment Flood Management Plans (CFMPs), Regional Flood Risk Appraisals (RFRAs) and Surface Water Management Plans (SWMPs). The suite of flood risk policy issues and information on the scale and nature of the risks in these various documents needs to be brought into "real" settings with the SFRA tasked with improving the understanding of flood risk across the districts.

The Oldham Level 2 Hybrid Strategic Flood Risk Assessment (SFRA) is presented across three separate report volumes and are referred to as the 'SFRA Volumes I, II and III' throughout this User Guide:

SFRA User Guide

The SFRA Volume I (User Guide) has been developed to provide specific guidance for SFRA users and should be the first point of call when using the SFRA. Each user specific section links to the evidence provided in the SFRA Volume II and Volume III and their associated mapping.

SFRA Mapping

The SFRA Volume II and III have produced a suite of strategic flood risk maps. These maps should be used to guide development away from high flood risk areas in conjunction with the guidance in PPS25 and its Practice Guide and the guidance provided in the SFRA Volume I (this document).

Future identified development sites should also use the suite of strategic flood risk maps produced along with any additional updated data available at the time from the relevant LPA and the Environment Agency.

Below is a complete list of all maps produced in the SFRA Volume II and III.

Use of SFRA Data

Whilst all data collected and produced during the SFRA process has been supplied to Oldham LPA (report, maps, GIS, modelled output) there should be controls on its use. It is anticipated that the SFRA report (all volumes) and associated maps will be published on the Council website as PDFs as the central source of SFRA data and available to download.

The LPA will be able to use the modelled output (depths, hazards and outlines) for internal use. This use of this information must consider the context within which it was produced. The use of this data will fall under the license agreement between the LPA and the Environment Agency as it has been produced using Environment Agency data. It should be remembered that the modelling undertaken for the SFRA is of a strategic nature and more detailed FRAs should seek to refine the understanding of flood risk from all sources to any particular site.

SFRA data should not be passed on to third parties outside of the LPA. Any third party wishing to use existing Environment Agency flood risk datasets should contact External Relations in the Environment Agency North West Region. A charge is likely to apply for the use of this data.

Map Name	Map Reference	SFRA Reference	Description	
Flood Zones	Volume II Map 1.1 (A to G)	Volume II Section 2.2 & 3.2	These maps show Flood Zone 3b, 3a and 2 and proposed development allocations. This map should be used to facilitate the application of the Sequential Test by Spatial Planners and Development Management officers. See Section 2 and 3 for more guidance.	
Flood Risk Management	Volume II Map 1.2 (A to G)	Volume II Section 2.9 & 3.3	.3 These maps provide the location of current Flood Risk Management (FRM) measures within the study area including defences and areas benefiting from defences (1 in 100 year standard of protection). This map can be used to identify communities currently protected.	
Climate Change Sensitivity	Volume II Map 1.3 (A to G) Volume III Map 2.9	Volume II Section 2.11 & 3.4 Volume III Section 2	These maps should be used as an early indication of areas in which fluvial flooding may increase in the future. These maps are useful when carrying out a sweep of sites that may require the Exception Test by Spatial Planners, Development Management and developers in assessing possible future fluvial risks. Emergency planners may also find them useful while designating access and egress routes. At the Diggle School site more detailed climate change mapping has been produced for the Level 2 SFRA.	
Strategic Flood Depth	Volume II Map 1.4 (A to G)	Volume II Section 3.5	A strategic depth grid has been created using the extent of Flood Zone 3 and topographic data. These maps should provide an early identification of the variation of risk throughout the Flood Zone. At the Diggle School and Frenches Wharf sites more detailed flood depth maps have been produced for the Level 2 SFRA.	
Reservoir Screening	Volume II Map 1.5 (A to G)	Volume II Section 2.6 & 3.6	The reservoirs within and near to the council have been mapped to show their location only. This map should not influence the spatial placement of development during the Sequential Test; however, they should inform the need for emergency planning to take account of the risk within community plans. Reservoir inundation mapping for reservoirs under the 1975 Reservoirs Act is covered by the Civil Contingencies Act and the information has a national security status. The National Protocol for the Handling, Transmission and Storage of Reservoir Inundation (Flood) Maps for England and Wales classifies reservoir inundation mapping according to map types and reservoir inundation mapping would not be available for public release. For this reason the SFRA has not taken the analysis of reservoir flood risk forward beyond the Level 1 SFRA, including mapping the extent of inundation that may be expected following a reservoir breach.	
Fluvial depth and hazard	Volume III Map 2.1-10	Volume III Section 2	These maps have been produced for the Diggle School site. They are based on a detailed 1D-2D hydraulic river model created for the SFRA. They identify both depths	

Map Name	Map Reference	SFRA Reference	Description
(Diggle School)			 and hazards during the 1 in 100 year and 1 in 1000 year fluvial flood events. Outputs have also been produced including the impact of climate change. The hazards maps have been produced as a function of flood depth, flood velocity and a debris factor. Flood hazards are categorised as No Hazard, Very Low Hazard, Dangerous for some, Dangerous for most and Dangerous for all. Flood extent maps have also been produced. Animations have been produced for 1 in 1000 year fluvial event. This can be used to identify rapid inundation zones, the development of flow paths and indicative inundation timing. As the outputs have been produced using a 2D model to represent the floodplain, the outputs also identify critical flood paths along roads and around buildings once flood water enters the urban environment. These maps should be used during the Sequential Test and to provide the evidence to inform the likelihood of sites passing the Exception Test. Sites situated in communities with high depths and/or hazards should be avoided and would find it difficult the pass the Exception Test. Emergency planners may also find this useful in designating access and egress routes.
Fluvial extent (Robert Fletcher site, Greenfield)	Volume III Map 2.11	Volume III Section 2	This map has been produced to confirm the risk to the Robert Fletcher site. The plan identifies the 1 in 1000 year flood extent from the Environment Agency Upper Mersey Flood Mapping Study (2008). The map should be used to apply the Sequential Test and Exception Test.
Culvert Blockage (Wince Brook)	Volume III Map 2.12	Volume III Section 2	These maps have been produced to understand the residual risk along Wince Brook which is in culvert across a Strategic development site. The 1D ISIS model produced in for the SFRA (see volume II report and maps) was used and run with several standard blockage scenarios (20% and 80% blockage at two culverts). The 1 in 100 flood event with climate change and 1 in 1000 year flood events were tested.
Frenches Wharf depth and hazard	Volume III Map 2.13 and 14	Volume III Section 2	These maps have been produced to inform the LPA emergency planners at the Frenches Wharf development site. A post development scenario was investigated by altering the LIDAR to incorporate the proposed finished floor levels across the site. A detailed 1D-2D hydraulic river model was created to identify both depths and hazards during the 1 in 1000 year event to consider residual risks.

Map Name	Map Reference	SFRA Reference	Description
Canal Hazard Zone	Volume III Map 3.1 (A to E)	Volume III Section 3	A Canal Hazard Zone has been generated for areas which could flood if the Rochdale or Huddersfield Narrow Canal were to breach.This should influence the spatial placement of development during the Sequential Test and highlight the need for FRA to investigate the residual risk further during a site-specific FRA. Site emergency plans should also take the residual risk into account.
Susceptibility to surface water flooding	Volume III Map 5.1 and 5.2 (A to G)	Volume III Section 5	These maps have been produced using the same methodology as the national surface water maps. However, LIDAR data has been used and edited to include flow paths and buildings. A current and future (increased intense rainfall and runoff) scenario has been produced. These maps have been used to help define Critical Drainage Areas. These maps should be used during the Sequential and Exception Test and scoping of a site-specific FRA. They should also be used during the master planning and the sequential approach to site layout.
Critical Drainage Areas	Volume III Map 5.3 and 5.4 (A to G)	Volume III Section 5	Certain locations are particularly sensitive to an increase in the rate of surface water runoff and/or volume from new development. There are generally known local flooding problems associated with these areas. These areas have been defined as Critical Drainage Areas in the SFRA (justification can be found in the Level 2 SFRA: Vol III for the CDAs). Specific drainage requirements are required in these areas to help reduce local flood risk (see SFRA User Guide: Vol I). These maps also show the results of an assessment of surface water flood risk to properties. These are not the number of properties that have historically been affected by surface water flooding but the number of properties that could be affected by such flooding if a 1 in 200 year rainfall event were to occur.
Hydraulic Interactions	Volume III Map 7.1 (A to E)	Volume III Section 7	The plan shows the interactions between different sources of flooding. This map should be used when applying the Sequential and Exception Tests and should lead to further consideration of hydraulic interactions in site specific FRAs.

Contents

Execut	ive Summary	iv
1	Introduction	1
1.1 1.2 1.3	Background Development of the SFRA SFRA Monitoring	1 2 4
2	Guidance for Spatial Planners	5
2.1 2.2 2.3 2.4 2.5	Introduction Sequential Test Exception Test Applying the Sequential Test and assessing the likelihood of passing the Exception Test Flood Risk and other Land Use Policies.	6 8 8 10 14
3	Guidance for Development Management	. 17
3.1 3.2 3.3	Introduction The Sequential Test and Exception Test Supporting the FRA Process	19 19 20
4		
4.1 4.2 4.3 4.4 4.5	The Sequential Test and Exception Test Site specific Flood Risk Assessments FRA Guidance Considering risk of flooding from other sources	22 23 24 26 27
4.6 5	Drainage for new developments	33 20
5 5.1 5.2 5.3	Introduction Strategic Approach Potential mitigation measures	38 38 38 38
6	Guidance for Emergency Planners	42
6.1 6.2 6.3 6.4 6.5	Introduction Emergency planning overview Flood Plan Recommendations Planning Approval – Flood Plans including flood warning Flood Awareness	42 42 43 44 45
Appen	dices	I
Α.	Flood Risk Concepts	I
В.	Flood Risk Assessment Hierarchy	XI
С.	The Planning Framework	XIV
D.	Stakeholder Engagement and Data Management	XXIX
Ε.	Flood Risk Zones	.XXXI
F.	Flood Risk Vulnerability Classification	XXXIII
G.	Sustainable Drainage Systems	XXXVII
Н.	Mitigation Measures	XIXXX

JBA consulting

List of Figures

Figure 2-1: Taking flood risk into account in LDDs	7
Figure 2-2: Where the Exception Test Applies	9
Figure 2-3: Sequential Test and Exception Test Flow Diagram	11
Figure 2-4: First and Second Pass of Proposed Development Sites Sequentia Test	l 13
Figure 2-5: Identifying the Likelihood of Passing the Exception Test	14
Figure 2-6: Green Infrastructure and District Places – Key Diagram	16
Figure 3-1: Planning Applications and Flood Risk	18
Figure 4-1: FRA Preparation	26
Figure 4-2: Example breach hydrograph	32
Figure 6-1: Local and Regional Flood Plans	43
Figure A1: Flooding From All Sources	II
Figure A2: Source – Pathway – Receptor Model	VIII
Figure B1: Hierarchical Approach to Flood Risk Assessments	XII
Figure G1: SUDS Management Train Principle	XXXVII

JBA consulting

List of Tables

Table 1-1: Relevant Legislation, Plans, Policies and Strategies	2
Table 1-2: SFRA Review Triggers	4
Table 2-1: Sequential & Exception Test Key Steps	12
Table 3-1: FRA considerations and SFRA supporting evidence	20
Table 4-1: Development types and application of Sequential and Exception Tests	23
Table 4-2: FRA considerations and SFRA supporting evidence	25
Table 5-1: Possible Mitigation Measures	39
Table 6-1: Flood Warning, Evacuation Plans and SFRA Evidence	44
Table A1: Reservoir Consequence Classification	IV
Table A2: NFCDD Condition Ratings for Flood Defences	V
Table A3: Flood Hazard ratings	X
Table C1: Housing Targets	XXIII
Table D1: Stakeholder Involvement	XXIX
Table F1: Land Use Classifications	XXXVI
Table G1: Suitability of SUDS Techniques	XXXVIII

Abbreviations

ABD	Areas Benefiting from Defences
AEP	Annual Exceedance Probability
AGMA	Association of Greater Manchester Authorities
CFMP	Catchment Flood Management Plans
CLG	Communities and Local Government
COW	Critical Ordinary Watercourses
CRR	Community Risk Register
CSO	Combined Sewer Overflow
DPDs	Development Plan Documents
EA	Environment Agency
EU	European Union
FCERM	Flood and Coastal Erosion Risk Management
FRA	Flood Risk Assessment
FRM	Flood Risk Management
FRMP	Flood Risk Management Plan
GMRF	Greater Manchester Resilience Forum
LDDs	Local Development Documents
LDF	Local Development Framework
LIDAR	Light Detection and Ranging
LPAs	Local Planning Authorities
NFCDD	National Fluvial and Coastal Defence Database
PPS	Planning Policy Statement
RFRA	Regional Flood Risk Assessment
RBMP	River Basin Management Plans
RPB	Regional Planning Bodies
RPG	Regional Planning Guidance
RSS	Regional Spatial Strategy
SA	Sustainability Appraisal
SCI	Statement of Community Involvement
SEA	Strategic Environmental Assessment
SFR	Significant Flood Risk
SFRA	Strategic Flood Risk Assessment
SHLAA	Strategic Housing Land Availability Assessment
SoP	Standard of Protection
SUDS	Sustainable (Urban) Drainage Systems
SWMP	Surface Water Management Plan
UDP	Unitary Development Plan
UKCIP	United Kingdom Climate Impacts Programme
UKCP	United Kingdom Climate Projections
UU	United Utilities
WCS	Water Cycle Study
WFD	Water Framework Directive

Glossary

Actual risk

The risk posed to development situated within a defended area (i.e. behind defences), expressed in terms of the probability that the defence will be overtopped, and/or the probability that the defence will suffer structural failure and the consequences should the failure occur.

Annual exceedence probability

The estimated probability of a flood of given magnitude occurring or being exceeded in any year. Expressed as, for example, 1 in 100 chance or 1 per cent.

Adoption of sewers

The transfer of responsibility for the maintenance of a system of sewers to a sewerage undertaker.

Attenuation

Reduction of peak flow and increased duration of a flow event.

Canal Hazard Zone

A "Canal Hazard Zone" has been created for the Rochdale Canal and the Huddersfield Narrow Canal as part of the Level 2 SFRA to show areas that could potentially be affected by flooding in the event of breach of raised canal embankments. This zone is based on broad scale modelling techniques and should only be taken as an indication of areas that might be at risk.

Catchment Flood Management Plans (CFMP)

A strategic planning tool through which the Environment Agency seeks to work with other key decision-makers within a river catchment to identify and agree policies for sustainable flood risk management.

Climate change

Long-term variations in global temperatures and weather patterns, both natural and as a result of human activity.

Compensation storage

A floodplain area introduced to compensate for the loss of storage as a result of land raising for development purposes.

Critical Drainage Areas

Certain locations are particularly sensitive to an increase in the rate of surface water runoff and/or volume from new development. There are generally known local flooding problems associated with these areas. These areas have been defined as CDAs in the SFRA.

Design event

A historic or notional flood event of a given annual flood probability, against which the suitability of a proposed development is assessed and mitigation measures, if any, are designed.

Design event exceedence

Flooding resulting from an event which exceeds the magnitude for which the defences protecting a development were designed – see residual risk.

Design flood level

The maximum estimated water level during the design event.

DG5 Register

Register held by water companies on the location of properties affected by sewage related flooding problems.

Exceedence flow

Excess flow that emerges on the surface once the conveyance capacity of a drainage system is exceeded.

EU Floods Directive

The EU Floods Directive came into force on the 10th December 2009. The outputs required by the directive include Preliminary Flood Risk Assessments to determine areas of significant flood risk, maps showing the impact and extent of significant events and Flood Risk Management Plans to outline how significant flood risks will be mitigated.

Exception Test

One of the Tests under PPS25. The Exception Test should only be considered in exceptional circumstances where the Sequential Test has indicated that there is a need for development in flood risk areas. The vulnerability of a proposed development and the flood risk to that site indicate whether the Exception Test will be required.

Flood defence

Flood defence infrastructure, such as flood walls and embankments, intended to protect an area against flooding to a specified standard of protection.

Flood Map

A map produced by the Environment Agency providing an indication of the likelihood of flooding within all areas of England and Wales, assuming there are no flood defences. Only covers river and sea flooding.

Floodplain

Area of land that borders a watercourse, an estuary or the sea, over which water flows in time of flood, or would flow but for the presence of flood defences where they exist.

Flood Estimation Handbook (FEH)

Provides current methodologies for estimation of flood flows for the UK.

Flood Risk Management (FRM)

The introduction of mitigation measures (or options) to reduce the risk posed to property and life as a result of flooding. It is not just the application of physical flood defence measures.

Flood risk management strategy

A long-term approach setting out the objectives and options for managing flood risk, taking into account a broad range of technical, social, environmental and economic issues.

Flood Risk Assessment (FRA)

A study to assess the risk to an area or site from flooding, now and in the future, and to assess the impact that any changes or development on the site or area will have on flood risk to the site and elsewhere. It may also identify, particularly at more local levels, how to manage those changes to ensure that flood risk is not increased. PPS25 differentiates between regional, sub-regional/strategic and site- specific flood risk assessments.

Flood risk management measure

Any measure which reduces flood risk such as flood defences.

Flood Zone

A geographic area within which the flood risk is in a particular range, as defined within PPS25.

Fluvial

Flooding caused by overtopping of rivers or stream banks.

Freeboard

The difference between the flood defence level and the design flood level, which includes a safety margin for residual uncertainties.

Greenfield land

Land that has not been previously developed.

ISIS

ISIS is a software package used for 1-Dimensional river modelling. It is used as a tool for flood risk mapping, flood forecasting and other aspects of flood risk management analysis.

Local Development Framework (LDF)

A non-statutory term used to describe a folder of documents which includes all the local planning authority's Local Development Documents (LDDs). The local development framework will also comprise the statement of community involvement, the local development scheme and the annual monitoring report.

Local Development Documents (LDD)

All development plan documents which will form part of the statutory (LDDs) development plan, as well as supplementary planning documents which do not form part of the statutory development plan.

Main River

A watercourse designated on a statutory map of Main Rivers, maintained by Defra, on which the Environment Agency has permissive powers to construct and maintain flood defences.

Major development

A major development is:

a) where the number of dwellings to be provided is ten or more, or the site area is 0.5 Ha or more or

b) non-residential development, where the floor space to be provided is 1,000m² or more, or the site area is 1 ha or more.

Ordinary watercourse

All rivers, streams, ditches, drains, cuts, dykes, sluices, sewers (other than public sewer) and passages through which water flows which do not form part of a Main River. Local authorities and, where relevant, Internal Drainage Boards have similar permissive powers on ordinary watercourses, as the Environment Agency has on Main Rivers.

Permitted development rights

Qualified rights to carry out certain limited forms of development without the need to make an application for planning permission, as granted under the terms of the Town and Country Planning (General Permitted Development) Order 1995.

Planning Policy Statement (PPS)

A statement of policy issued by central Government to replace Planning Policy Guidance notes.

Pound length

The length of the canal between locks is referred to as the pound length.

Previously-developed land

Land which is or was occupied by a permanent structure, including the curtilage of the developed land and any associated fixed surface infrastructure (PPS3 annex B). This is often referred to as brownfield land.

Regional Spatial Strategy (RSS)

A broad development strategy for a region for a 15 to 20 year period prepared by the Regional Planning Body.

Reservoir (large raised)

A reservoir that holds at least 25,000 cubic metres of water above natural ground level, as defined by the Reservoirs Act, 1975.

Residual risk

The risks that remain after all risk avoidance, substitution, control and mitigation measures have been taken into account.

Resilience

Constructing the building in such a way that although flood water may enter the building, its impact is minimised, structural integrity is maintained and repair, drying & cleaning are facilitated.

Resistance

Constructing a building in such a way as to prevent flood water entering the building or damaging its fabric. This has the same meaning as flood proofing.

Return period

The long-term average period between events of a given magnitude which have the same annual exceedence probability of occurring.

Risk

The threat to property and life as a result of flooding, expressed as a function of probability (that an event will occur) and consequence (as a result of the event occurring).

Run-off

The flow of water from an area caused by rainfall.

Section 106 Agreement

Section 106 of the Town and Country Planning Act 1990 (as amended) allowing local planning authorities to negotiate arrangements whereby the developer makes some undertaking if he/she obtains planning permission. These are known interchangeably as planning agreements, planning obligations or planning gain.

Section 106 (Water Industry Act 1991)

A key section of the Water Industry Act 1991, relating to the right of connection to a public sewer. This is likely to be amended subject to the implementation of sustainable drainage techniques by the Flood and Water Management Bill currently passing through Parliament.

Sequential Test

A key test under PPS25 that facilitates the consideration of flooding to development allocations using a risk based approach.

Standard of Protection (SOP)

The design event or standard to which a building, asset or area is protected against flooding, generally expressed as an annual exceedence probability.

Strategic Environmental Assessment (SEA)

European Community Directive (2001/42/EC) on the assessment of the (SEA) Directive effects of certain plans and programmes on the environment.

Strategic Flood Risk Assessment (SFRA)

The assessment of flood risk on a local authority scale to inform the application of the Sequential Test and Exception Test in PPS25.

Surface water flooding

Surface water flooding is the term used to describe flooding that has come overland from surrounding areas. However, flooding in the urban environment is difficult to separate into distinct sources and in reality surface water flooding will be from a combination of overland flows, sewers and highways gullies backing up and surcharging at manholes, local watercourses overtopping, culverts surcharging and potentially high groundwater levels.

Sustainable Drainage Systems (SUDS)

A sequence of management practices and control structures, often referred to as SUDS, designed to drain water in a more sustainable manner than some conventional techniques. Typically these are used to attenuate run-off from development sites.

Sustainability Appraisal (SA)

An integral part of the plan-making process which seeks to appraise the economic, social and environmental effects of a plan in order to inform decision-making that aligns with sustainable development principles.

TUFLOW

TUFLOW is a software package used for 2-Dimensional river modelling. It is used as a tool for flood risk management analysis.

Vulnerability Classes

PPS25 provides a vulnerability classification to assess which uses of land may be appropriate in each Flood Zone.

Washland

An area of the floodplain that is allowed to flood or is deliberately flooded by a river or stream for flood management purposes.

Water Framework Directive (WFD)

A European Community Directive (2000/60/EC) of the European Parliament and Council designed to integrate the way water bodies are managed across Europe. It requires all inland and coastal waters to reach "good status" by 2015 through a catchment-based system of River Basin Management Plans, incorporating a programme of measures to improve the status of all natural water bodies.

Windfall sites

Sites which become available for development unexpectedly and are therefore not included as allocated land in a planning authority's development plan.

1 Introduction

1.1 Background

- 1.1.1.1 JBA Consulting was commissioned in July 2009 by Oldham Council to undertake a Level 2 Hybrid Strategic Flood Risk Assessment (SFRA) following on from the Greater Manchester Sub-Regional SFRA completed in August 2008. This is a hybrid SFRA as it fills in the gaps from the Level 1 SFRA and fulfils the criteria for a Level 2 SFRA.
- 1.1.1.2 The Level 2 SFRA has been prepared in accordance with current best practice, Planning Policy Statement 25 Development and Flood Risk (PPS25)¹ and the PPS25 Practice Guide².
- 1.1.1.3 The Bury, Rochdale and Oldham (BRO) Level 2 SFRA has recently been completed and included part of Oldham Council (Beal catchment). The Oldham Hybrid SFRA has incorporated the findings of the BRO SFRA to provide a stand alone SFRA for Oldham Council.
- 1.1.1.4 It should be noted that planning matters in parts of Saddleworth are dealt with by the Peak District National Park Authority. These parts of Saddleworth are therefore not covered by Oldham's LDF. Refer to the maps that accompany the Volume II and III reports for the location of the LDF boundary.

1.1.2 Flood Risk Assessment

- 1.1.2.1 Flooding is a natural process and does not respect political demarcations or administrative boundaries; it is influenced principally by natural elements of rainfall, tides, geology, topography, rivers and streams and man made interventions such as flood defences, roads, buildings, sewers and other infrastructure. As was seen in the summer 2007 floods, flooding can cause massive disruption to communities, damage to property and possessions and even loss of life. Flood risk concepts are explored further in Appendix A. The risk of flooding from rivers, surface water, sewers, groundwater, canals and reservoirs has been explored for Oldham as part of this SFRA.
- 1.1.2.2 For this reason it is important to avoid developing in flood risk areas in the first instance. Where this is not possible development should be directed to areas with the lowest possible level of flood risk. Having exhausted all opportunities to direct development away from areas of flood risk then the allocation of land for development must consider the vulnerability of the proposed land use to flooding and take measures to minimise flood risk to people, property and the environment. This is the thrust of the risk based sequential approach to managing flood risk and it is the backbone of PPS25.
- 1.1.2.3 Current Government policy requires local authorities to demonstrate that due regard has been given to the issue of flood risk as part of the planning process. It also requires that flood risk is managed in an effective and sustainable manner and where new development is as an exception necessary in flood risk areas, the policy aim is to make it safe without increasing flood risk elsewhere and wherever possible reduce flood risk overall.
- 1.1.2.4 The SFRA fits into a hierarchy of Flood Risk Assessments, each at an increasing level of detail that are designed to inform different stages of the planning system, from Regional Spatial Strategies to site specific Planning Applications. More background on this is provided in Appendix B.

¹ Communities and Local Government (2006) Planning Policy Statement 25: Development and Flood Risk ² Communities and Local Government (2009) Planning Policy Statement 25: Development and Flood Risk – Practice Guide

1.1.3 The Planning Framework

- 1.1.3.1 The land use planning process is driven by a whole host of policy guidance on a national, regional and local level. Whilst the majority of these policies are not aimed at mitigating flood risk, there are key links at strategic, tactical and operational levels between land use and spatial planning (Regional and Local Government), and Flood Risk Management (FRM) planning (Environment Agency), which should be considered as part of a planned and integrated approach to delivering sustainable development.
- 1.1.3.2 Table 1-1 lists relevant legislation, plans, policies and strategies. More detail on these is provided in Appendix C.

Table 1-1: Relevant Legislation, Plans, Policies and Strategies

Flood risk	Planning		
National level			
 EU Floods Directive – EU (2007) Flood Risk Regulations (2009) Draft Flood and Water Management Bill – Defra (2009) Future Water – Defra (2008) Improving Surface Water Drainage – Defra (2008) Making Space for Water – Defra (2005) Learning Lessons from the 2007 Floods – Sir Michael Pitt (2008) 	 Planning Policy 25: Development and Flood Risk – CLG (2006) Planning Policy 25: Development and Flood Risk Practice Guide –CLG (2009) PPS1 Delivering Sustainable Development – ODPM (2005) Planning Policy Statement: Planning and Climate Change, supplement to PPS1 – CLG (2007) Planning Policy Statement 12 Local Spatial Planning - CLG (2008) 		
Regional level			
 River Irwell Catchment Flood Management Plan – Environment Agency (2008) Upper Mersey Catchment Flood Management Plan – Environment Agency (2008) North West Regional Flood Risk Appraisal – 4NW (2008) Greater Manchester sub-regional SFRA – AGMA (2008) 	 North West Regional Spatial Strategy – Government Office for the North West (2008) North West River Basin Management Plan – Environment Agency (2008) 		
Local level			
 Flood risk assessments for development sites (referred to as necessary in SFRA volumes) 	 Emerging Local Development Framework for Oldham Existing UDP for Oldham 		
All relevant legislation, plans, policies and strategies - January 2010			

1.2 Development of the SFRA

- 1.2.1.1 A Steering Group was set up for the SFRA, comprising of key officers from Oldham Council and the Environment Agency (EA). British Waterways and United Utilities were consulted during the development of the SFRA. More information on stakeholder engagement and data management is provided in Appendix D.
- 1.2.1.2 The Oldham Hybrid Strategic Flood Risk Assessments (SFRA) is provided within three volumes:
 - Volume I SFRA User Guide
 - Volume II Level 1 SFRA
 - Volume III Level 2 SFRA

1.2.2 Volume I SFRA User Guide

1.2.2.1 This volume has been developed to provide guidance on the use of the SFRA for Local Authority Spatial Planning, Regeneration, Development Management and Emergency Planning officers and Developers.

1.2.3 Volume II Level 1 SFRA

- 1.2.3.1 The SFRA Volume II have used existing data to make an assessment of flood risk from all sources now and in the future and builds on the Association of Greater Manchester Authorities (AGMA) Sub-Regional SFRA. It provides the evidence for LPA officers to apply the Sequential Test and identifies the need to pass the Exception Test where required. Both of these tests are a fundamental part of PPS25.
- 1.2.3.2 The main tasks for the SFRA Volume II include:
 - Stakeholder consultation, data collection and review
 - Assessment of current flood risk
 - Delineation of PPS25 Flood Zones including the Functional Floodplain and the impact of climate change
 - Assessing flood risk from 'other' sources including surface water, groundwater, sewers, reservoirs and canals
 - Considering the impact of climate change
 - Assessing potential development sites
 - Producing a range of strategic flood risk maps
 - SFRA recommendations

1.2.4 Volume III Level 2 SFRA

- 1.2.4.1 The SFRA Volume III provides evidence for key communities where the Exception Test may need to be applied. It considers the detailed nature of flood hazard taking account of the presence of flood risk management measures such as flood defences. The additional detail can also inform a sequential approach to development allocation within flood risk areas and mitigation options where appropriate.
- 1.2.4.2 The main tasks for the SFRA Volume III included:
 - Development of a detailed 1D-2D linked hydraulic river models for the Diggle Brook and River Tame at Frenches Wharf
 - Review of flood risk from the Chew Brook
 - Detailed modelling of Wince Brook for several culvert blockage scenarios
 - Assessment and modelling of residual risks associated with canals
 - Detailed surface water flooding maps, delineation of Critical Drainage Areas and recommendations for SWMPs
 - Assessment of the consequences of development on flood risk elsewhere
 - Assessment of the hydraulic interactions between different sources of flood risk
 - Development Strategy
 - Recommendations for future work

1.3 SFRA Monitoring

- 1.3.1.1 Whilst this SFRA has been produced using the most up-to-date national guidance and flood risk data, it is recommended that the SFRA should be updated on a regular basis. **The Environment Agency has suggested that this be every 3 to 4 years**, unless there is a significant flood affecting the area, arising to new information or areas at flood risk. A review of the SFRA should also be undertaken if there are any major national policy changes.
- 1.3.1.2 There are a number of key outputs from possible future studies and datasets which are known to be regularly updated. These should be incorporated in any updates to the SFRA. Table 1-2 shows the triggers for revising the SFRA.

Trigger	Sources	Possible Timescale
Irwell or Upper Mersey CFMP	Environment Agency	Updated every 5 years
Flood Zones	Environment Agency	Updated quarterly
NFCDD	Environment Agency	Ongoing
Possible Flood Event	All	Unknown
Sewer Flood Data	United Utilities	This is now available but was not made available in the timescales required for inclusion in this project
Greater Manchester Multi-Agency Flood Plan	GM Resilience	Ongoing
Planning Policy	Communities & Local Government	Unknown
Surface Water Management Plans	Oldham Council	Unknown

Table 1-2: SFRA Review Triggers

2 Guidance for Spatial Planners

The aim of this section is to provide guidance on the use of the SFRA in Spatial Planning. Planners should also refer to the guidance on SFRA maps provided on page vii and background to the SFRA and flood risk concepts in Appendix A and C.

Spatial Planners should use the guidance in this SFRA User Guide, and where necessary PPS25 and its Practice Guide to:

- Scope the Sustainability Appraisal of the Core Strategy
 - o Screen development options
 - Produce appropriate flood risk indicators
- Avoid strategic sites at high risk of flooding where no other planning objectives outweigh flood risk
 - o Using Sustainability Appraisal and Sequential Test Spreadsheet
- Carry out the Sequential Test on all proposed development sites
 - Using information provided in the Level 1 SFRA (Volume II) and Sequential Test Spreadsheet to avoid sites at high risk
- Identify those sites where a greater understanding of flood risk is required
 - These should include key development sites at high risk of flooding
- Identify the likelihood of sites passing the Exception Test
 - Using the Sustainability Appraisal to assess development sites with regards to other planning objectives and assign weight given to flood risk as an environmental constraint
 - Using information provided in the Level 2 SFRA (Volume III) to assess level of risk to each site and likelihood of it remaining safe. If a site cannot pass all the criteria of the Exception Test it cannot be approved.
- Allocate appropriate development through the Sustainability Appraisal
 - Produce evidence that both tests have been applied by noting the outcome and decisions made to avoid, substitute or allocate the site
- Draft flood risk policies and develop guidance on each allocated site within the Sustainability Appraisal
 - Guidance should include the need for site-specific FRAs to pass Part C) of the Exception Test

2.1 Introduction

- 2.1.1.1 PPS25 provides the basis for the sequential approach, in which its policies require that the LPA consider flood risk, its mechanisms, spatial distributions and development vulnerability in all stages of the development planning process.
- 2.1.1.2 PPS25 promotes positive planning to deliver strategic opportunities to reduce flood risk to communities and apply the Government's policy on flood risk management. The Practice Guide also provides further advice on how flood risk should be taken into account in the LDF (See Section 2.20-2.24 of PPS25 PG).
- 2.1.1.3 Throughout the risk based sequential approach, management actions to avoid, substitute, control and mitigate flood risk should always be kept in mind and opportunities taken to minimise flood risk at every stage of the planning process. The principal aim of these actions is to ensure that flood risk to people, their property and the environment is reduced to acceptable levels.
- 2.1.1.4 The hierarchy of management decisions and actions include:
 - Avoidance by locating new development outside areas at risk of flooding,
 - Substitution by changing from a more to a less vulnerable land use, and
 - **Control & Mitigation** of the risks by implementing flood risk management measures through a variety of techniques to reduce the impact and mitigate residual risks.
- 2.1.1.5 The sequential approach is achieved through the **successive** application of the Sequential Test and Exception Test. Both the Oldham SFRA Volume II and III provide the evidence base for this decision making process and should form part of the baseline information for the Sustainability Appraisal of LDDs for the scoping and evaluation stages.
- 2.1.1.6 The SFRA provides the relevant information on flood risk to allow the LPA to:
 - Produce appropriate policies for the allocation of sites and development management which avoids flood risk to people and property
 - Produce appropriate flood risk indicators to inform the Sustainability Appraisal
 - Undertake the Sequential Test and Exception Test
 - Allocate appropriate land use
- 2.1.1.7 The SFRA Volume III also provides information to allow planners to make strategic decisions that identify the amount and type of development that may be suitable in the community and the reality of it remaining safe from flooding if allocated. It also identifies potential strategic mitigation strategies that may be required for development to be feasible in the area.
- 2.1.1.8 Figure 2-1 illustrates the process of taking account of flood risk within LDDs and the use of SFRAs. The flow diagram has been adapted from PPS25 Practice Guide (Figure 2.4 p.18) to link in with guidance provided within this User Guide.
- 2.1.1.9 Each colour represents a key stage in the sequential approach process. Identical colours are used throughout this Chapter to make it easier to identify what guidance relates to individual steps within the sequential approach sequence.
- 2.1.1.10 It must be acknowledged that Figure 2-1 is a generic flow diagram and does not reflect the stage that the LPA is up to in the LDD process. It is more likely that the LPA may have produced a Core Strategy prior to undertaking the Sequential Test with the benefit of the data in this SFRA or are preparing their LDDs and allocating development. PPS25 Practice Guide assumes a strong link with the Sustainability Appraisal, and the SFRA influences all stages of the Sustainability Appraisal. Therefore the generic flow diagram in both PPS25 Practice Guide and this User Guide should be amended to take account of steps which may have previously been taken within the first pass of the Sustainability Appraisal stage.

JB/

2.2 Sequential Test

- 2.2.1.1 When allocating or approving land for development in flood risk areas, those responsible for making development decisions are expected to demonstrate that there are no suitable alternative development sites (of the type and nature proposed by the Core Strategy) located in lower flood risk areas.
- 2.2.1.2 PPS25 introduces a Sequential Test that is core to the SFRA process. The Sequential Test is the key driver for the Level 1 SFRA. In order to carry out the Sequential Test the LPA need to know:
 - Spatial extent of flood risk within the whole LPA area
 - Flood Zones (See Appendix E)
 - Flood Zone 1 Low Probability: less than 1 in 1000 year fluvial flood event
 - Flood Zone 2 Medium Probability: between a 1 in 100 and 1 in 1000 year fluvial flood event
 - Flood Zone 3a High Probability: a 1 in 100 year or greater fluvial flood event
 - Flood Zone 3b Functional Floodplain: land where water has to flow or be stored in times of flood
 - Flooding from other sources
 - Location of proposed development sites and the proposed vulnerability of that development in flood risk terms (See Appendix F)
- 2.2.1.3 There are a number of key challenges faced by the LPA in applying the Sequential Test in accordance with PPS25 and its Practice Guide.
- 2.2.1.4 The Sequential Test is purely based on the Flood Zones as defined by Table D1 of PPS25, but these zones only take account of fluvial and tidal flooding, which ignore the presence of flood risk management measures such as defences. Other sources of flooding must also be considered in the spatial distribution of development. The PPS25 Practice Guide states that "other forms of flooding should be treated consistently with river flooding in mapping probability and assessing vulnerability to apply the Sequential and Exception Tests" (p.83). However, it can be problematic to map the spatial extent of flooding from other sources as well as matching the level of risk associated with other sources with those presented within the three Flood Zones. For instance, Flood Zone 3 cannot be directly related to a high susceptible area at risk of surface water flooding as the probability and consequences are significantly different.
- 2.2.1.5 Whilst it may not be appropriate to avoid development at risk from other sources of flooding, risk should be considered when taking a sequential approach to land use or the substitution of lower development vulnerability in higher risk areas within a development site.

2.3 Exception Test

- 2.3.1.1 If the Sequential Test has been successfully applied, following the steps in Figure 2-3, and the LPA cannot allocate development in lower flood risk areas, Table D.2 of PPS25 and the vulnerability of development should be referred to. A copy of this table can be found in Appendix F.
- 2.3.1.2 Only once the vulnerability of the development is defined using Table D.3 of PPS25 should an assessment be made of whether or not that development is appropriate within that Flood Zone and whether the Exception Test needs to be applied.
- 2.3.1.3 Figure 2-2 below has been produced from Table D.3 of PPS25.

Figure 2-2: Where the Exception Test Applies

EI = Essential Infrastructure, HV = Highly Vulnerable, MV – More Vulnerable, LV – Less Vulnerable, WC = Water Compatible

Development would be permitted. An FRA would be required in Zones 2 and 3 to demonstrate that the development will be safe and may be required in Zone 1 sites The Exception Test is required Development should **not** be permitted in this zone

- 2.3.1.4 Once the requirement of the Exception Test has been identified, three stringent conditions must all be passed in order to pass the Test.
- 2.3.1.5 These conditions (see paragraph D9 of PPS25) are as follows:
 - a. It must be demonstrated that the development provides wider sustainability benefits to the community that outweigh flood risk, informed by a SFRA where one has been prepared. If the LDD has reached the 'submission' stage (see Figure 4.1 of PPS12: Local Development Frameworks) the benefits of the development should contribute to the Core Strategy's Sustainability Appraisal,
 - b. The development should be on developable previously-developed land or, if it is not on previously-developed land, that there are no reasonable alternative sites on developable previously-developed land, and
 - c. A site-specific Flood Risk Assessment must demonstrate that the development will be safe, without increasing flood risk elsewhere, and, where possible, will reduce flood risk overall.
- 2.3.1.6 It will be the requirement of Development Management officers to make sure all parts of the Exception Test have been passed in granting planning permission (see Section 3). At a Spatial Planning stage, only the likelihood of passing the Exception Test can be assessed, as actually passing the Test will require the completion of a site-specific FRA to determine if the site and its occupiers will be safe during times of flood.
- 2.3.1.7 What should be done at this early stage of the planning process is to identify those sites in which the Exception Test is required and to avoid those sites in which flood risk is too great, using the information provided in the SFRA Volume III, or there is no overriding planning objectives for that development.

2.4 Applying the Sequential Test and assessing the likelihood of passing the Exception Test

- 2.4.1.1 This section provides the following guidance on how Spatial Planners are to apply the Sequential and Exception Test within the Sustainability Appraisal of LDDs.
- 2.4.1.2 Figure 2-1, discussed earlier on, identifies how flood risk is taken into account in LDDs and introduces the use of the Sustainability Appraisal in applying the Sequential and Exception Tests. What PPS25 does not provide, is step-by-step guidance on how to apply each Test rather the concept in which they are applied.
- 2.4.1.3 What the guidance below will do, if followed appropriately, is produce clear and transparent evidence that both the Sequential and Exception Test have been applied, which can then feed into the Sustainability Appraisal process of LDDs. This can either be reported within the Sustainability Appraisal itself or a supporting stand alone document which then feeds into the Sustainability Appraisal.
- 2.4.1.4 The guidance provided in this SFRA User Guide should not supersede PPS25 or other plans and policies, but should be seen as a practicable approach in how the LPA should apply the Sequential and Exception Tests within the preparation of the LDF.

2.4.2 Spatial Planning Flow Diagrams and Tables

- 2.4.2.1 The following flow diagrams and tables provide a recommended approach for Spatial Planners in applying the two Tests, keeping in mind the flood risk management hierarchy of avoid, substitute, control and mitigate, whilst identifying and allocating sustainable development sites.
- 2.4.2.2 Colours have again been used to represent key stages in the sequential approach process as identified in Figure 2-1 previously. The same colours are used in the flow diagrams and tables below, the aim of which is to make it easier to identify what guidance relates to individual steps within the sequential approach sequence.
- 2.4.2.3 Figure 2-3 below, illustrates the Sequential and Exception Tests as an input, process and output flow diagram. The main inputs being the evidence provided in both the Level 1 and Level 2 SFRA and the LPA Core Strategy and Sustainability Appraisal. The flow diagram begins by the LPA assessing alternative development options at a strategic scale using the Sustainability Appraisal. This then works down using evidence provided in the Level 1 and Level 2 SFRA to avoid inappropriate development sites, substitution within the site boundary and identifying those sites requiring the Exception Test. The flow diagram ends by revisiting and updating the Sustainability Appraisal with the allocation of development sites. Figure 2-3 can be linked to Table 2-1, which provides a more detailed descriptive step by step guidance of the flow process illustrated. Consultation should take place with the Environment Agency Development and Flood Risk Team (where required) to obtain further guidance.
- 2.4.2.4 During this process there is a need to identify which sites should be avoided, substituted, those which can go forward, or once the Sequential Test has been applied how to assess if the site will remain safe during the Exception Test. This is a step wise process and must be documented, but a challenging one as a number of the criteria used are qualitative and based on experienced judgement.
- 2.4.2.5 Figure 2-4 provides more guidance on using the Sequential Test Spreadsheet produced in the SFRA during Steps 1 to 8. Figure 2-5 provides guidance on how to assess the likelihood of sites passing the Exception Test using key questions and evidence provided in the SFRA in assessing whether a site will remain safe or not during Steps 9 to 10.

JBA consulting

Table 2-1: Sequential & Exception Test Key Steps

Applying the Sequential Test during the SA of Development Options

- Step 1 State the **geographical area** over which the Sequential Test is to be applied. This can be over the entire LPA area but will usually be reduced to communities to fit with functional requirements of development or objectives within RSS or Core Strategy
- Step 2 Identify reasonably available areas of strategic growth
- Step 3 Identify the presence of all sources of risk using the evidence provided in this SFRA
- Step 4 Screen available land for development in ascending order from Flood Risk Zone 1 to 3, including the subdivisions of Flood Risk Zone 3
 This can be achieved using the information provided in the Sequential Test Spreadsheet (See Volume II Section 4). The screening spreadsheet provides a spatial assessment of each proposed development site provided by the LPA against Flood Zones and Environment Agency surface water susceptibility zones
- Step 5 Could all development be located in lower risk areas? If not, move onto the next Steps

1st and 2nd Pass of the Proposed Development Sites Sequential Test

Follow Figure 2-4 using the Sequential Test Spreadsheet to:

- Step 6 Identify those sites which should be **avoided** where risk is considered too great and there is no strategic planning objectives identified in Core Strategy
- Step 7 Identify those sites in which the consequence of flooding can be reduced through substitution within the site boundary
- Step 8 Assess yield and layout issues for remaining high risk sites to check whether development is viable

Identify the Likelihood of passing the Exception Test

Follow Key Questions imbedded within Figure 2-5 and SFRA evidence to identify the likelihood of those sites remaining at risk passing the Exception Test. The community risk review tables produced in Volume III Section 8 can aid this process

- Step 9 Assess the compatibility of the **development vulnerability** using Table D.2 of PPS25 and identify the requirement of passing the **Exception Test** using Table D.3 of PPS25
- Step 10 Use the SA to assess alternative development options by balancing flood risk against other planning constraints. **Proposed sites should be avoided and removed from this process if:**
 - Key Questions in Figure 2-5 attributes a significant negative response
 - Where development will require significant mitigation measures to make the site safe and to reduce impacts downstream
 - Where the requirement of loss of floodplain compensation cannot be delivered

Producing an Evidence Base

The following steps should be used within the SA to produce the evidence that all Tests have been applied:

- Step 11 **Produce a supporting stand alone document** recording all decisions made during Steps 1 to 10. Each proposed development site should be referenced and the decisions made to avoid, substitute, or allocate the site and the evidence used. This can be incorporated within the appendix of the SA
- Step 12 Allocated development allocations within the SA, including appropriate flood risk policies and development guidance on each allocated site. Guidance should include the need for appropriate site-specific FRAs.

The Environment Agency and other relevant stakeholders (such as United Utilities, British Waterways) should be **consulted** on any policies drafted that inform the application of the Exception Test and the production of FRAs within the LPA area

Figure 2-4: First and Second Pass of Proposed Development Sites Sequential Test

- 2.4.2.6 Once the requirement for a Level 2 SFRA has been identified, Spatial Planners will need to assess the likelihood of sites passing the Exception Test. This is seen as a critical part of the spatial planning process by avoiding inappropriate development being allocated. The Environment Agency and/or Development Management are likely to object to inappropriate development.
- 2.4.2.7 During Steps 9 and 10, Spatial Planners are asked to assess whether or not a site highlighted at flood risk has the potential to pass the Exception Test. This requirement can be linked to Figure 2-5 illustrated below.
- 2.4.2.8 By following Figure 2-5, Spatial Planners should be able to obtain a greater understanding on the level of flood risk present at each key development site that remains following the application of the Sequential Test.
- 2.4.2.9 A review of the flood risk associated with the key communities has been provided in the SFRA Volume III Section 8 and should help to support the decision on the likelihood of sites passing the Exception Test in these areas.
- 2.4.2.10 During Steps 9 and 10, following Figure 2-3, Spatial Planners should use the Sustainability Appraisal process to assess alternative sites against flood risk indicators and other planning considerations. Whilst a balance is required, the Exception Test can be a show stopper in that planning permission cannot be granted if all criteria of the Exception Test cannot be met. Once this has been completed, Steps 11 and 12 can be carried out, producing the evidence base for the Sustainability Appraisal, allocating appropriate development sites, producing flood risk policies and development guidance.

Figure 2-5: Identifying the Likelihood of Passing the Exception Test

2.5 Flood Risk and other Land Use Policies

- 2.5.1.1 Flood risk is a material consideration in land use planning decision making and can greatly impact on the sustainability of various land uses in all locations. Having applied the Sequential Test and Exception Test where necessary, the resultant assessment of appropriateness and associated flood risk information will then influence the land use planning decision at whatever level it is being considered.
- 2.5.1.2 Land use policies and wider strategic decisions involving social and economic development in the LDDs will be influenced and shaped by the sequential approach informed by this SFRA.
- 2.5.1.3 For instance, the Green Infrastructure (GI) of Oldham is part of the council area's life support system. It is a planned and managed network of natural environmental components and green spaces that intersperse and connect the urban centres, suburbs and rural fringe consisting of:
 - Open Spaces parks, woodlands, nature reserves, lakes
 - Linkages River corridors and canals, pathways and cycle routes and greenways
 - Networks of "urban green" private gardens, street trees, verges and green roofs

- 2.5.1.4 With regards to flood risk, green spaces can be used to manage storm flows and free up water storage capacity in existing infrastructure to reduce risk of damage to urban property, particularly in town centres and vulnerable urban regeneration areas. GI can also improve accessibility to waterways and improve water quality, supporting regeneration and improving opportunities for leisure, economic activity and biodiversity.
- 2.5.1.5 The Greater Manchester Green Infrastructure Study was published in September 2008 by TEP for AGMA and Natural England on the feasibility of a GI framework for Greater Manchester. Figure 2-6 is an extract of the Summary Report illustrating the broad GI network in Greater Manchester.
- 2.5.1.6 GI should be incorporated into master planning and individual sites, directed by the need to retain exceedance flood paths and natural attenuation of flood flows.
- 2.5.1.7 The evidence provided in the Level 1 and Level 2 SFRA should be used to enhance the Greater Manchester Green Infrastructure Study by identifying opportunities for delivering FRM measures through GI. River corridors identified as functional floodplain are an excellent linkage of GI and can provide storage during a flood event. Areas identified within the urban environment or upstream of a critical surface water flood areas should be incorporated into council GI strategies. Opening up land to create flow paths or flood storage areas can help protect current and future developments.

Figure 2-6: Green Infrastructure and District Places – Key Diagram

3 Guidance for Development Management

The aim of this Section is to provide guidance on the use of the SFRA by Development Management. Planners should also refer to the guidance on SFRA maps provided on page vi and background to the SFRA and flood risk concepts in Appendix A and C.

When it comes to individual planning applications, Planners should use the guidance in this SFRA User Guide, PPS25 and its Practice Guide to:

- Check whether the Sequential Test and/or the Exception Test have already been applied
 - Refer developer to LDD and supporting evidence to identify if the Sequential Test has been applied and development is likely to pass the Exception Test – site may have already been assessed
 - If evidence is available, the Sequential Test and likelihood of passing the Exception Test have been assessed. If no evidence is available, developers must carry out the Sequential and Exception Tests – move on to the next stage
- *Refer developer to the following in order for them to apply the Sequential and Exception Tests*
 - o SFRA Volume II to inform Sequential Test
 - Sequential Test Spreadsheet to compare similar sites assessed
 - o SFRA Volume III to inform Exception Test
 - SFRA Volume II maps to review scale and nature of flood risk
 - o SFRA Volume III maps to identify residual risks
 - Volume III Chapter 9 to assess likelihood of passing the Exception Test
- Consult with Environment Agency and other relevant stakeholders to
 - o Assess flood risk constraints identified on site using the SFRA
- Scope an appropriate FRA
 - What is the scale and nature of risk from all sources?
 - o Does the site lie within a CDA identified in Volume III Section 5?
 - Are there any strategic mitigation requirements identified in Volume III Section 9 and/or LDD?
 - o Refer developers to Section 4, 5 and 6 of this SFRA User Guide
- Consult with Environment Agency over FRA acceptance/approval

JBA consulting

Planning Application Preparation Thought Process/Decision Supporting Evide Identify proposed development site Identify proposed land use type in An SERA should have already provided the evidence	LPA LDDs
Identify proposed development site Has the site been allocated for the proposed land use type in An SERA should have already provided the evidence	LPA LDDs
Has the site been allocated for the proposed land use type in An SERA should have already provided the evidence	LPA LDDs
the Local Development Document (LDD) using the Sequential/ Exception Tests?	
No What Flood Zones are present within the site? Environment Agency F	Flood Map
Does the proposed development have the potential the SFRA & what was the outcome in the SFRA/ LDD2 (compare proposed lunc) here the SFRA/	
to pass the Sequential Test?	
Yes Deap the proceed doublement	ection 8 & 9
boes the proposed development have the potential to pass Part A) and B) the Exception Test?	itegy Areas
Does the proposed development have the potential to pass Part C) the Exception Test? What is the degree of risk associated with the site? BRO SFRA Volume III BRO SFRA Volume III	I Mapping idual risks) Section 8
required & if consultation is required with other flood risk consultees area flooding including Critical Drainage Areas BRO SFRA Volume I Se	ection 3 & 4
Undertake a pre-application consultation with flood risk consultees Are there any known flooding-related site constraints which make the development proposed unviable?	cess
An FRA needs to be fit for purpose. Is it possible to design a new development which is safe and which the LPA & flood risk consultees does not increase flood risk elsewhere? Wherever agency.gov.uk/research	nding Advice ment- h/planning/
possible it should by and reduce have to the wider of 2004, aspx	
Developer to undertake FRA	Section 4
justification been provided to the LPA wherever they	
LPA to assess whether FRA fulfils all requirements?	
Have all contentious issues been discussed and agreed with the LPA and flood risk consultees?	orm (1app) rtal.gov.uk/
Application Form & accompanying FRA	na Appendix B
LPA assessment of planning application with advice from the Environment Agency are a statutory consultee, who will advise on the technical side of the FRA PPS25 Practice Gui	ide p.25

Figure 3-1: Planning Applications and Flood Risk

3.1 Introduction

- 3.1.1.1 The LPA are the principal decision-makers on applications for new development. This is carried out through Development Management. Whilst it is the overall responsibility of the developer to carefully consider flood risk issues regarding their proposed development site, the LPA should be involved at the earliest possible stage during pre-application discussions.
- 3.1.1.2 Following on from recommendations made in the Pitt Review, Development Management must take some of the roles and responsibilities from the Environment Agency as the first point of call in Flood Risk Management and planning applications.
- 3.1.1.3 The consideration of flood risk within the context of an individual site planning application is shown on Figure 3-1. It highlights how to take account of flood risk using the information provided within the Level 1 and Level 2 SFRA and the guidance provided in PPS25 and by the Environment Agency Standing Advice.
- 3.1.1.4 Development Management officers should refer to page vii of this report for map numbers.
- 3.1.1.5 If an individual site has been identified for development, Development Management must check that the development is sound regarding flood risk i.e. it has passed the Sequential Test and is likely to pass the Exception Test where applicable and that it is supported by a coherent FRA which meets the requirements of PPS25.
- 3.1.1.6 Development Management officers must always consider development from a strategic view point and the cumulative effect of all proposed development taking place, even though applications for developments are submitted at a site level. It should not be presumed that flood risk has been understood at a strategic high level and that one application may need to fit within a flood risk management strategy for an area.

3.2 The Sequential Test and Exception Test

- 3.2.1.1 If the proposed site is already identified in a Sequentially Tested LDD, which is supported by the findings of the SFRA and transparent evidence that the Sequential Test has been carried out, the site will already have been through the Sequential Test. The developer must still apply the sequential approach to site layout when matching land use vulnerability within flood risk areas as described in PPS25 and pass the Exception Test.
- 3.2.1.2 However, where a site has not been identified within a Sequentially Tested LDD, the Sequential Test will need to be applied i.e. the developer will need to provide evidence to the LPA that there are no other reasonable available sites where the development could be located. The LPA will then use this information to apply the Sequential Test. This particularly applies to Windfall Sites that have not been allocated in the LDF.
- 3.2.1.3 Development Management and developers should refer to Section 2 of this report for guidance on applying the Sequential and Exception Tests. This includes identifying a zone of search to apply the Sequential Test as recommended. If the zone of search is reduced from the full council area to an individual community or specific location, it is critical that evidence is provided to justify this decision. For example the area has an essential requirement for this type of development, or provides essential services for the development.
- 3.2.1.4 Developers will need to provide evidence that the Exception Test can be passed. This will be needed for allocated and windfall sites, if required according to the vulnerability of the proposed land use, areas requiring redevelopment or regeneration, redevelopment of existing single properties or changes of use. Development Management will then need to review the evidence provided and decide whether a site passes the Exception Test.

- 3.2.1.5 The flood risk review tables for the key communities provided in the SFRA Volume III Section 8 should help Development Management identify where windfall development may be appropriate on flood risk grounds. Development in certain communities may find it difficult to pass both the Sequential Test and Exception Test due to the nature of flood risk and/or the scale of mitigation which would be required in order to make the development safe.
- 3.2.1.6 Some locations may require a strategic approach when it comes to planning development, due to the possibility of large off site impacts caused by piecemeal development. In this case individual developments must adhere to the wider strategic approach towards flood risk management outlined in the SFRA Volume III Section 9. These should be transformed into flood risk policies within the appropriate LPA LDDs. More detail on mitigation options is also provided in Section 5 of this volume.
- 3.2.1.7 PPS25 Practice Guide Section 4.23 to 4.45 provides more detail and recommended approach on how to apply the Sequential Test and Exception Test to individual planning applications, windfall sites, existing and single properties and change of use and must be referred to.

3.3 Supporting the FRA Process

- 3.3.1.1 All development applications must be supported by an appropriate site-specific FRA in accordance with the guidance provided in PPS25 Practice Guide Section 3.80 to 3.90. Further guidance is also provided in Section 4, 5 and 6 of this Volume.
- 3.3.1.2 At the first possible stage Development Management should refer the developer to the SFRA (all Volumes) and the flood risk mapping provided within. The developer should also be referred to the appropriate LDD and flood risk policies which could potentially influence their proposed development.
- 3.3.1.3 If the site or community has been identified at risk of flooding from any source, Development Management and the developer should consult the Environment Agency and other relevant flood risk consultees, such as United Utilities, The Peel Group or British Waterways, to identify known flood-related site constraints and agree the scope of an appropriate FRA.
- 3.3.1.4 The Environment Agency Standing Advice should be used at this stage. This can be accessed online (http://www.environment-agency.gov.uk/research/planning/82584.aspx).
- 3.3.1.5 The Environment Agency is a statutory consultee for specific categories of development where flood risk is an issue. Table 3-1 outlines when a more detailed FRA may be required for which the Environment Agency should be consulted. These also highlight the requirement of a more detailed FRA.

Considerations	Supporting evidence in the SFRA
The development other than minor development is situated in Flood Zone 2 and 3	Volume II Flood Zone Maps or Flood Zones on Environment Agency website if updated. See PPS25 Practice Guide section 2.46 for definition of major developments
The development is >0.5 hectares situated in Flood Zone 1, but there are critical drainage problems (i.e. the development lies within a Critical Drainage Area) or the site has been identified as being at risk of flooding from other sources	Volume III Critical Drainage Area Maps
The development is at risk of flooding from other sources of flooding	Volume III Canal Hazard and refined Surface Water maps
The development is situated behind flood	Volume II Flood Risk Management Maps

Table 3-1: FRA considerations and SFRA supporting evidence

Considerations	Supporting evidence in the SFRA
defences (possibility of overtopping during extreme flood event or breach)	Volume III depth and hazard maps for both the 1 in 100 year and 1 in 1000 year flood events, including the consideration of climate change
The development exceeds 1ha in size	Consult Environment Agency
The development is within 20m of the bank top of a Main River – the Environment Agency will have to consent to any work within 8m of a Main River and are likely to object in principal to any development within these areas	Consult Environment Agency
Any culverting operation or development which controls the flow of any river or stream	Consult Environment Agency

4 Guidance for Developers

The aim of this section is to provide guidance on the use of the SFRA by Developers. Developers should also refer to Section 4, guidance on SFRA maps provided on page vi and background to the SFRA and flood risk concepts in Appendix A and C.

Developers should use the guidance in this SFRA User Guide, PPS25 and its Practice Guide to:

- Assess whether the site is a
 - Windfall development, allocated development within the LDF, within a regeneration area, single property or change of use to identify if Sequential and Exception Tests are required
- Check whether the Sequential Test and/or the Exception Test have already been applied
 - Request information from the LPA on whether the Sequential Test or likelihood of the site passing the Exception Test have been assessed
 - If not, provide evidence to the LPA that the site passes the Sequential Test and will pass the Exception Test

• Consult with LPA Development Management, the Environment Agency and the wider group of flood risk consultees where appropriate to scope an appropriate FRA if required

- o Guidance on FRAs provided in this SFRA User Guide
- o Refer to Outline Mitigation Strategy identified in the SFRA Volume III Section 9
- Also refer to Environment Agency Standing Advice, CIRIA Report C624, PPS25 and its Practice Guide
- Consult LPA emergency planners if required
- Submit FRA to Development Management and Environment Agency for approval, where necessary

4.1 Introduction

4.1.1.1 Flood risk should first be considered from a strategic view point even though applications for proposed developments are submitted at a site level. The SFRA provides the evidence base for developers to assess the flood risk to a site at a strategic level and scope an appropriate site-specific Flood Risk Assessment. Developers should liaise closely with the LPA during the pre-application stage of development to determine if a site is suitable, and if so what type of development is appropriate, given the application of the Sequential Test and likelihood of passing the Exception Test as required by PPS25. If a site is suitable then developers should prepare a site-specific Flood Risk Assessment, in close liaison with the LPA and Environment Agency.

- 4.1.1.2 Developers should consider all sources of flood risk when assessing whether a site is suitable for development. Guidance on developing in Critical Drainage Areas and areas at risk from sources other than fluvial is provided in this section.
- 4.1.1.3 Figure 3-1 in the Guidance for Development Management (Section 3) provides a useful overview of the consideration of flood risk within the context of an individual site planning application.

4.2 The Sequential Test and Exception Test

- 4.2.1.1 The Sequential Test and Exception Test are fundamental to PPS25 in determining the suitability of land for development in regard to flood risk and avoidance of flood risk to new development. These tests may still be required at an individual site level. Table 4-1 identifies when the Sequential and Exception Tests are required for certain types of development and who is responsible for providing the evidence and those who need to apply the tests. Further information is provided in Section 4 of the PPS25 Practice Guide.
- 4.2.1.2 If the developer is required to provide evidence that the site can pass the Sequential Test and/or Exception Test if appropriate, then further guidance on these can be found in Section 2 of this User Guide.

Development / PPS25 PG Reference	Sequential Test Required	Who Applies the Sequential Test?	Exception Test Required?	Who Applies the Exception Test?
Allocated Sites Sect. 4.23–4.31	Νο	LPA should have already carried out the test during the allocation of development sites within their LDD	Dependent on land use vulnerability (Appendix F)	LPA to advise on the likelihood of test being passed. But the developer must provide evidence that the test can be passed by providing planning justification and producing a detailed FRA
Windfall Sites Sect. 4.33–4.35	Yes	Developer provides evidence that the test can be passed to the LPA. An area of search to be agreed, but should be within local community boundary.	Dependent on land use vulnerability (Appendix F)	Developer must provide evidence that the test can be passed by providing planning justification and producing a detailed FRA
Regeneration Sites Identified Within LDD Sect. 4.36–4.38	No	-	Dependent on land use vulnerability (Appendix F)	LPA to advise on the likelihood of test being passed. But the developer must provide evidence that the test can be passed by providing planning justification and producing a detailed FRA

		JBA consulting
on Test ed?	Who Applies the Exception Test?	
dent on e bility.	LPA to advise on the likelihood of passing test. But the developer	

Renewable Energy Projects Sect. 4.39	No	PPS22 Renewable Energy advises the LPA not to use a sequential approach in the consideration of such proposals	Dependent on land use vulnerability.	LPA to advise on the likelihood of passing test. But the developer must provide evidence that the Test can be passed by providing planning justification and producing a detailed FRA. Part B of the Exception Test may not apply in accordance with PPS22.
Redevelopment of Existing Single Properties Sect. 4.40-4.41	No	-	Dependent on land use vulnerability (Appendix F)	Developer must provide evidence that the test can be passed by providing planning justification and producing a detailed FRA
Changes of Use Sect. 4.42-4.45	No	-	Dependent on land use vulnerability (Appendix F)	Developer must provide evidence that the test can be passed by providing planning justification and producing a detailed FRA

4.3 Site specific Flood Risk Assessments

PPS25 PG Reference

- 4.3.1.1 Site specific Flood Risk Assessments (FRAs) are prepared by those proposing development. The principal aims of a FRA are to determine the acceptable management of flood risk to the development proposal itself and any impacts elsewhere, and to ensure that the development and its users/occupants remain safe in times of flood.
- 4.3.1.2 Once the site has been through the Sequential Test and has been identified as being likely to pass the Exception Test a site-specific FRA should be undertaken. The LPA and Environment Agency should be consulted in order to scope the content and level of the FRA.
- 4.3.1.3 There are three levels of FRA:
 - Level 1- Screening study, to identify whether there are any flooding or surface water management issues that need to be considered further
 - Level 2- Scoping study, to be undertaken if the Level 1 FRA indicates that there are flood risk issues needing further consideration and these risk can be readily quantified
 - Level 3- Detailed study, where further quantitative analysis is required to appropriately assess flood related issues and determine any effective mitigation measures needed to be put in place

- 4.3.1.4 It should be recognised that the SFRA has assessed flood risk at a strategic level, which can be used to provide evidence for a Level 1 and Level 2 FRA. However, where a more detailed FRA is required the developer should undertake a detailed assessment of the flood risk to the site, using the SFRA to scope out flood risk issues and referring to the guidance in the SFRA User Guide, PPS25, its Practice Guide and CIRIA Report Development and Flood Risk. Developers should satisfy themselves that the data provided in this SFRA is up-to-date and accurate for their development.
- 4.3.1.5 Table 4-2 scopes when a more detailed FRA is likely to be required. The actual scope of the FRA should be agreed between the developer, LPA and Environment Agency before it is undertaken.

Considerations	Supporting evidence in the SFRA
The development other than minor development is situated in Flood Zone 2 and 3	Volume II Flood Zone Maps See PPS25 Practice Guide section 2.46 for definition of major developments
The development is > 0.5 hectares and situated in Flood Zone 1, but there are critical drainage problems (i.e. the development lies within a Critical Drainage Area) or the site has been identified as being at risk of flooding from other sources	Volume III Critical Drainage Area Maps
The development is at risk of flooding from other sources of flooding	Volume III Canal Hazard and refined Surface Water maps
The development is situated behind flood defences (possibility of overtopping during extreme flood event or breach)	Volume II Flood Risk Management Maps Volume III depth and hazard maps for both the 1 in 100 year and 1 in 1000 year flood events, including the consideration of climate change
The development exceeds 1ha in size	Consult Environment Agency
The development is within 20m of the bank top of a Main River – the Environment Agency will have to consent to any work within 8m of a Main River and are likely to object in principal to any development within these areas.	Consult Environment Agency
Any culverting operation or development which controls the flow of any river or stream	Consult Environment Agency

Table 4-2: FRA considerations and SFRA supporting evidence

- 4.3.1.6 The detail required for each level of FRA is highlighted in Figure 4-1 below. The production of a site-specific FRA can be seen as an iterative process with those carrying out a Level 1 FRA before moving on to a Level 2 and finally a Level 3. It is appropriate to review the level of risk present to assess whether development is appropriate and achievable before moving onto the next stage.
- 4.3.1.7 A larger number of iterations and/or consultations on the FRA maybe needed if significant mitigation measures are proposed and compensational storage is required to assure the LPA and Environment Agency that the development can remain safe and meets all requirements. This figure also links the evidence provided in the SFRA which can aid the decision making process. Section 5 and Appendices G and H of this Volume and Volume III Section 9 should also be referred to regarding appropriate mitigation measures.

4.4 FRA Guidance

- 4.4.1.1 Flood Risk Assessments should follow the approach recommended by:
 - The Environment Agency Standing Advice this can be found at the website below (http://www.environment-agency.gov.uk/research/planning/82584.aspx)
 - CIRIA Report C624 Development and Flood Risk Guidance for the Construction Industry
 - PPS25 and its Practice Guide
- 4.4.1.2 These documents describe when a FRA is required and what it should contain. They guide developers to produce a "fit for purpose" FRA.
- 4.4.1.3 The key requirements of a FRA are provided in Section 3 of the PPS25 Practice Guide. The FRA should answer the following questions:

1. Development Description and Locations

- What is the type of development and where will it be located?
- What is the vulnerability classification of the current and future use of the development site (using Table D.2 of PPS25)?

JBA consulting

 Has the development site been assessed during the Level 1 and Level 2 SFRA and is in line with LDDs? If so the Sequential and Exception Test may have already been applied - See guidance in Section 4.2.

2. Definition of Flood Hazard

- What sources of flooding could affect the site? See Volume II and III Mapping
- For each source, how would flooding occur, referencing any historical records where these are available?
- What existing surface water drainage requirements are present on the site? – See Section 4.6 on CDAs and consult with LPA, Environment Agency and United Utilities

3. Probability

- Which Flood Zones are present within the site? See Flood Zone Map
- What actual and residual risks are associated with the site? See FRM, depth and hazards, canal and reservoir location maps
- What are the existing rates and run-off volume generated by the site?

4. Climate Change

 How is flood risk at the site likely to be affected by climate change? – See climate change maps

5. Flood Risk Management Measures

How will the site be protected from flooding, including the potential impacts of climate change, over the development's lifetime? Developers should refer to Section 5 of this Volume for details on appropriate mitigation. They should also refer to Section 8 and 9 of Volume III regarding the Key Community flood risk reviews and mitigation strategies.

6. Off Site Impacts

How will the proposed development and measures be implemented to protect the site from flooding and prevent run-off be designed to not increase flood risk elsewhere and where achievable reduce flood risk to the surrounding community?

7. Residual Risks

- What flood-related risks will remain after mitigation measures has been implemented to protect the site from flooding?
- How, and by whom, will these risks be managed over the lifetime of the development?
- Developers should refer to section 6 of this volume for guidance on developing an emergency Flood Plan for a development site.

4.5 Considering risk of flooding from other sources

- 4.5.1.1 Flood Risk Assessments must take account of flood risk from all sources, rather than concentrating on fluvial, tidal or surface water flood risk. The SFRA Volume II has identified using available data the presence of these sources, whilst the SFRA Volume III has provided a more detailed analysis of the actual and residual risk associated with them where practicable. At some locations there may be hydraulic interactions between different sources of flooding. Map 7.1 (A to E) (Volume III) shows the broad areas (squares) where there is an interaction between canals and/or rivers. Where this is the case the FRA should look at the possible interactions in greater detail.
- 4.5.1.2 This section should be used by spatial planners to inform the development of policies in the Core Strategy on considering the risk of flooding from other sources.

4.5.2 Canals

- 4.5.2.1 The SFRA has identified that there is a residual risk associated with overtopping and breaching from broad canals. Within Oldham there is significant residual risk from a breach of the Rochdale or Huddersfield Narrow Canal. Whilst a low probability occurrence, the consequences are such that this source should be considered within a flood risk assessment that accompanies a development application. Flood risk from canals may not affect the same areas identified in the flood zone maps or it may add another source of flooding that must be considered.
- 4.5.2.2 Developers should be aware that any site that is at or below the top of a canal bank level may potentially be subject to canal flooding. The possible flood mechanisms include:
 - Canal bank overtopping
 - Canal embankment breach
- 4.5.2.3 Severe cases of canal bank overtopping may lead to breach failure depending on the geometry and characteristics of the canal at that location. Flood volumes and flood risk caused by canal bank overtopping are usually much lower than those arising from a breach of a canal embankment.
- 4.5.2.4 The SFRA Volume III (Level 2 SFRA) modelling predicted a small amount of canal overtopping, which implies that the canal system is essentially self regulating and although overtopping is possible the hazard is likely to be low. Any overtopping volumes are likely to be small compared to the general surface water runoff during a storm event. Therefore, the refined surface water maps (see Level 2 SFRA Maps 5.1 and 5.2 (A to G)) are perhaps the best indicator of the low embankments locations where flood water could potentially overtop the canal bank.
- 4.5.2.5 A "Canal Hazard Zone" has been created for the Rochdale Canal and the Huddersfield Narrow Canal as part of the Level 2 SFRA to show areas that could potentially be affected by flooding in the event of breach of raised canal embankments. This zone is based on broad scale modelling techniques and should only be taken as an indication of areas that might be at risk. The zone is there to trigger the scoping stage of a flood risk assessment, and should not be considered as comprehensive. It is the developer's responsibility to ensure that where a site is below canal level and within 1km that the screening exercise is undertaken and reported on in the FRA.
- 4.5.2.6 Within the SFRA canal hazard zone or where there is the potential for canal overtopping a FRA must appraise the actual risk of flooding to the site due to overtopping and/or breaching of the canal. Guidance on this is provided below.
- 4.5.3 Developing in the Canal Hazard Zone or areas where there is the potential for canal overtopping
- 4.5.3.1 If a proposed development site is located within the SFRA canal hazard zone or areas where there is the potential for canal overtopping then a three stage approach is proposed which may include some or all of site screening, scoping and a detailed assessment.

Stage 1. Site screening

- 4.5.3.2 The FRA should address the following questions for overtopping and breach as a first stage:
 - Is the site within the SFRA canal hazard zone?
 - Is the site shown as affected by the refined surface water maps (see Level 2 SFRA Maps 5.1 and 5.2 (A to G)) and lower than a canal? An assessment should be undertaken as to whether the surface water flow path within which the site sits intersects the canal on higher ground.
 - Is the proposed finished level of any part of the site lower than the canal bank level and within 1km of the canal?
 - Is the canal embanked above the site?

- Have there been past incidences of canal breach which may show that the location of the development site is vulnerable to canal breach?
- 4.5.3.3 If the response to any of these questions is yes, canal overtopping and breach flood risk should be considered in a Scoping Stage.

Stage 2. Scoping

4.5.3.4 **Overtopping**

- 4.5.3.5 If the screening identifies a second stage for canal overtopping risk is required the following questions should be addressed:
 - If high water levels occur in the canal close to the site, based on an assessment of both bank levels, is it possible that canal spill is likely to be towards, as opposed to away from, the site? If the opposite bank to that of the proposed site is lower it is likely that any spill will occur from this canal bank and not from the canal bank adjacent to the site.
 - Have there been past incidences of canal overtopping which may show that the location of the development site is vulnerable to canal overtopping? The canal pound is the body of water contained between the lock gates. The canal pound length is the distance between the lock gates for the body of water. The canal pound length adjacent to the site may receive water from an upper pound and may discharge water to a lower pound in storm conditions. The size of the bywashes control the water level rise and in some cases may not have capacity to deal with an extreme event. There may be additional lateral spillways for the control of water level rise within the pound length. Lower canal freeboard may increase the likelihood of canal overtopping in that location. Acts of vandalism may have caused overtopping in the past. Advice on any locations of historic overtopping is available from British Waterways.
 - Is the nature of the topography surrounding the canal pound length such that the canal is likely to intercept significant slope rainfall-runoff in the 1 in 100 year storm conditions with climate change? A canal in cutting may intercept rainfall-runoff from both banks causing water level rise in the pound length. A significant volume of rainfall-runoff in the 1 in 100 year event with climate change could cause overtopping within the pound length if the bywashes and spill structures are of insufficient capacity to control water level rise for that event and if there are raised embankments within the same pound length. The catchment for the canal pound is the area receiving runoff in a storm event which will include the canal water area, the towpath and may include areas beyond the canal on one or both banks as stated above. A canal pound with adequate bywashes and spill structure capacities that does not have a receiving catchment significantly larger than the width of the canal and its towpath is unlikely to have an overtopping problem unless historic events suggest otherwise.
- 4.5.3.6 If the response to any of these questions is yes, canal overtopping flood risk should be carried forward into Stage 3 and would also prompt a review of breach potential.

Breach

- 4.5.3.7 If screening suggests a second stage for canal breach risk is required the following questions should be addressed to scope the appropriate form of a canal breach and hence the flood risk to the development site. This may require expert advice from an engineering consultant:
 - Could overtopping cause a breach of the canal? Canal bank overtopping could lead to canal embankment failure depending on the nature of the bank material, the surface covering, overtopping flows and bank geometry. Small overtopping flows would be unlikely to lead to breach formation. The erosion potential of canal embankments should be quantified.
 - Is a breach possible from the bank geometry? A breach is only likely to occur if the canal top of bank levels are sufficiently high above surrounding ground

levels to form a raised embankment with a slope sufficiently steep to be susceptible to breach failure. British Waterways record particularly high embankments as principal embankments and they hold a record of the locations. Preliminary cross sections of the embankment and its constituent materials should be assessed to determine an appropriate breach mechanism.

- Have there been past incidences of canal breach which may show that the location of the development site is vulnerable to canal breach? Past breach failures may have been caused by overtopping of the canal bank or failure of the canal lining. Advice on locations of historic breaches is generally available from British Waterways.
- Are any structures such as aqueducts in poor condition? Aqueducts in poor condition will have a higher propensity to fail, and may have to be considered specifically.
- Are there any local culverts underneath the canal that may have insufficient capacity? The most serious breach in the past on the Rochdale Canal has been caused by culvert blockage and floodwater damming behind the canal which led to a breach of the canal.
- 4.5.3.8 If the response to any of these questions is yes, canal breach flood risk should be carried forward into Stage 3. If a canal breach is considered unlikely but the site is immediately below a canal then the FRA should consider what, if any, residual risk could be associated with the canal. Mitigation measures could include incorporating flood resilience measures into low level properties and raising ground levels.

Stage 3. Detailed Assessment

4.5.3.9 The scoping exercise may identify that a detailed assessment is required. It is expected that Stage 3 will only be required where Scoping identifies raised embankments where their breach would cause potential for loss of life and property damage.

Overtopping

- 4.5.3.10 If a third stage for canal overtopping risk is required the following should be addressed:
 - Construct a hydraulic model. A hydraulic model should be constructed in order to understand the inflows and outflows to the canal during a 1 in 100 year flood event, considering climate change. Inflows should consider runoff from towpaths and embankments and/or slopes (if applicable), culverts, and upstream inflows through bywashes (around locks) and lock gates.
 - Identify overland flow paths. If significant overtopping is identified by the inflow/outflow model, then a model should be constructed in order to understand overland flow paths from the canal in the event of overtopping (at the location(s) from which the site could be affected) and the potential depth and hazard associated with canal flooding to the development site. Any uncertainties and assumptions related to this model should be clearly stated. The Level 2 SFRA surface water flooding maps and discussions with the Environment Agency will help to identify critical overland flow paths for further detailed modelling.
 - Assess the freeboard required. Proposed finished floor levels should be assessed in relation to the risk of canal flooding. Risks associated with canal overtopping could be taken into account by raising floor levels (increasing the designed freeboard levels to take account of the risk) as the depths and flows will be generally low. Typically this approach is taken in the design of road and finished floor levels, where a 300mm freeboard is provided to ensure that the primary route for exceedence flows from either the surface water system or the canal is along the road network and away from property. It is the developer's responsibility to assess whether this freeboard is adequate, and the master plan for the site reflects the need to retain and guide overtopping flows to a safe area. Within areas of fluvial or surface water flood risk FRAs will need to consider this along with the measures taken to manage these other sources. Typically a freeboard value is added to the 1% plus climate change flood level to take into

account uncertainty and operational issues. Traditionally a value of 600mm is taken. Where a FRA is being undertaken in the canal hazard zone then the freeboard should be assessed from first principles taking into account flood risk from the canal as another source of uncertainty. A higher freeboard allowance may be required as a result.

• Assess any residual risks and decide how they should be managed. Flood warning and resilience measures may be appropriate. The developer should liaise with the LPA and British Waterways to determine suitable emergency planning arrangements.

Breach

4.5.3.11 If a third stage for canal breach risk is required the following should be addressed:

- Assess materials used for the construction of the embankment. Granular materials are likely to be more susceptible to failure than cohesive materials, and will have a different breach mechanism.
- The structural/geotechnical condition of the canal embankment. Raised embankments in poor condition, now or in the future, for example with animal burrows, are more likely to fail in breach. Are these principal embankments? This will affect the final breach mechanism adopted.
- The condition and capacity of any culverts underneath the canal.
- The condition of any structures such as aqueducts.
- An assessment of the likely mechanisms of canal breach and consequence at the location(s) from which the site could be affected. A hydraulic model should be constructed in order to understand peak flow, volumes and overland flow paths in the event of a breach and the potential depth and hazard to the development site associated with canal flooding. The canal should be assumed to be at maximum capacity at the time of breach. Any uncertainties and assumptions related to this model should be clearly stated. Additional guidance on the consideration of canal breach mechanisms should be referred to where necessary^{3 4 5}. A description of typical breach mechanisms is provided below.
- Proposed finished floor levels in relation to the risk of canal flooding. Risks associated with canal breach should be taken into account by raising habitable floor levels (increasing the designed freeboard levels to take account of the risk), but FRAs will need to consider this along with the measures taken to manage other sources of flood risk.
- Residual risks and how they should be managed. Flood warning and resilience measures may be appropriate. It is acknowledged that depending on the likelihood of canal failure and its consequence that the management of this risk should be balanced between resistance and resilience measures (see PPS25 Practice Guide). The developer should liaise with the LPA and British Waterways to determine suitable emergency planning arrangements. It is for the FRA to conclude on that balance and demonstrate that the risk can be managed through design and appropriate awareness, land raising and flood warnings.

³ British Waterways (2008) British Standards: Hydraulic Design of Canal Works Good Practice Guide ⁴ Dun, R. W. (2006) Reducing uncertainty in the hydraulic analysis of canals, Proceedings of the Institution of

⁺ Dun, R. W. (2006) Reducing uncertainty in the hydraulic analysis of canals, Proceedings of the Institution of Civil Engineers, Water Management 159, pages 211-224

⁵ Dun, R. W. (2007) An improved understanding of canal hydraulics and flood risk from breach failures. Water and Environment Journal 21 9-18.

Typical breach mechanisms

British Waterways have experience of assessing canal breach mechanisms. Canal breaches typically occur in a 3 stage mechanism and this is the recommended approach for a detailed breach assessment at Stage 3.

<u>Stage A</u> – In a few breach cases overtopping may lead to progressive erosion of the canal embankment face. In most breach cases failure of the canal lining leads to piping (sub-surface flow) through the canal embankment which gradually erodes the embankment material from within.

<u>Stage B</u> – Overtopping erosion of the canal may lead to a failure of the embankment and a breach of the raised canal bank. The size of the breach in Stage B is typically governed by the depth of the canal. The depth of the breach is down to canal bed level and the width is typically twice the depth so that the breach is approximately semi-circular in shape. For example, on a 1.5 m deep canal, the breach width may be typically 3 m. The time taken to form this breach is dependent on the embankment material. Granular materials will erode faster than cohesive materials. The breach dimensions govern the maximum flow from the canal. Initial tests for the SFRA suggested that an indicative maximum flow is approximately 30 m³/s.

<u>Stage C</u> – When the breach in Stage B has formed to canal bed level, erosion of a soft canal bed will continue to take place along the length of the canal in two directions away from the breach location. As continual erosion of the bed takes place flow from the canal weirs over into the resulting eroded hole. The maximum flow weiring into the eroded hole from each leg of the canal is limited by the width of the canal. This has been modelled by British Waterways as two broad crested weirs.

4.5.3.12 In those circumstances when no data is available a simplistic but conservative approach can be adopted. The key parameters to replicate are an appropriate peak flow and correct total outflow volume. An example breach hydrograph used in the SFRA is as follows. It is the responsibility of the developer within the FRA to establish whether this sample hydrograph is appropriate to the site.

Figure 4-2: Example breach hydrograph

4.5.4 Reservoirs

- 4.5.4.1 As part of a FRA, developers should liaise with Local Authority Emergency Planners to identify potential evacuation measures that should be taken to protect against the unlikely event of a major reservoir breach.
- 4.5.4.2 Developers should undertake a zone of search in the vicinity of their site to identify smaller reservoirs such as fishing lodges or mill supply ponds. The FRA should determine the ownership and maintenance regime of the reservoir and undertake a more detailed investigation into the effects of the reservoir overtopping or failing. The developer should then liaise with the LPA and reservoir owner to determine applicable emergency planning requirements or mitigation needs. Where there is significant flood hazard identified to the site from such failure, and especially from unmaintained reservoirs, the developer should liaise closely with the LPA about the suitability of the site for development.

4.5.5 Groundwater

4.5.5.1 Oldham is not considered to be at significant risk of groundwater flooding, as outlined in Volume II. However, if a risk of groundwater flooding is found, developers should consult with the LPA and Environment Agency at an early stage as to the next steps.

4.5.6 Sewers

- 4.5.6.1 Where the SFRA has identified that there is a risk from sewer flooding, any water that surcharges the sewer system would be expected to follow similar flow paths and pond in similar low spots, although the volume of water that emerges from the system will be entirely dependent on the reason for the network surcharging (which could be due to rainfall beyond the design level of the sewer system, sewer capacity issues or blockage or failure).
- 4.5.6.2 Developers should take account of the guidance in section 4.6 and liaise closely with United Utilities over any localised sewer flooding problems that could affect the site. Any known sewer flooding locations are prioritised for investment by United Utilities and may be the subject of future investment by the water company.
- 4.5.6.3 Future development should be designed so that it does not contribute to existing sewer flooding problems.
- 4.5.7 Surface Water
- 4.5.7.1 This is discussed in section 4.6 below.

4.6 Drainage for new developments

- 4.6.1.1 Development has the potential to cause an increase in impermeable area, an associated increase in surface water runoff rates and volumes, and a consequent potential increase in downstream flood risk due to overloading of sewers, watercourses, culverts and other drainage infrastructure. It should be borne in mind that the sewer network in places across the Greater Manchester area was designed to drain less development than exists today. Development has added flow over time and the network is known to be at capacity in many places. The frequent localised flooding experienced in many parts of Greater Manchester and in the Upper Tame Valley within this study area, is testament to this problem.
- 4.6.1.2 **Managing surface water discharges from new development is therefore crucial in managing and reducing flood risk to new and existing development downstream.** Carefully planned development can also play a role in reducing the amount of properties that are directly at risk from surface water flooding. The Planning System has a key role to play in settings standards for sustainable drainage from new developments and ensuring that developments are designed to take account of the risk from surface water flooding. Sustainable drainage plays an important part in reducing flows in the sewer network and in meeting environmental targets, alongside investment in maintenance and new capacity by United Utilities. United Utilities plan their investment on a five year rolling cycle, in consultation with key partners, including the Environment Agency.

Sustainable drainage and the use of Sustainable Drainage Systems (SUDS) is supported 4.6.1.3 by the policy direction in Future Water⁶, Making Space for Water⁷, the Pitt Review⁸ and the Draft Flood and Water Management Bill⁹ that provides for more sustainable management of the water cycle, working in partnership across different agencies and new responsibilities for local flood risk management. In particular, the Draft Flood and Water Management Bill requires developers where practical, to include sustainable drainage in new developments to reduce flood risk and improve water quality. It includes 'a requirement on developers to demonstrate that they have met national standards for the application of SUDS techniques before they can connect any residual surface water drainage to a public sewer (amending section 106 of the Water Industry Act 1991).' As part of their new responsibility for local flood risk management, local authorities will be responsible for approving SUDS for new developments and adopting and maintaining them.

Recognising the above, drainage from new developments should incorporate 4.6.1.4 storage, with residual discharge of surface water to the following networks in order of preference:

- Infiltration drainage (e.g. soakaways). •
- Discharge to a watercourse .
- Discharge to a public sewer
- 4.6.1.5 The choice of system will be determined by local ground conditions (including groundwater levels). Whilst infiltration SUDS may be the most suitable for new development, developers must consider the risk of contamination to underlying aquifers.
- The guidance below should be used in addition to the Environment Agency Standing 4.6.1.6 Advice¹⁰.

Development sites in the wider local authority districts 4.6.2

Developers should use the following guidance regarding surface water runoff from all new 4.6.2.1 developments:

Allowable discharge rates

- Development should deliver Greenfield runoff on Greenfield sites up to a 1 in 100 year storm event, considering climate change
- Development should aim for a reduction in surface water runoff rates of at least 30% for Brownfield sites up to a 1 in 100 year storm event, considering climate change (reduction of 30% was discussed with the Environment Agency Development Team when preparing the SFRA)
- Development should be designed so that there is no flooding to the development in a 1 in 30 year event and so that there is no property flooding in a 1 in 100 year plus climate change event
- There may be local variations on this where outfalls are directly to larger watercourses and hence surface water discharges from development sites can pass downstream before the main peak on the watercourse.

⁶ Defra (2008) *Future Water*

⁷ Defra, Department for Transport, HM Treasury and Office of the Deputy Prime Minister (2005) Making Space for water: Taking forward a new Government strategy for flood and coastal erosion risk management in England; First Government response to the autumn 2004 Making space for water consultation exercise ⁸ The Pitt Review (2008) Learning lessons from the 2007 floods

⁹ Defra (2009) Draft Flood and Water Management Bill © Crown Copyright

¹⁰ Environment Agency. Flood Risk Standing Advice for England - PPS25 National Version 2.0. Can be accessed online at http://www.environment-agency.gov.uk/research/planning/82584.aspx

- 4.6.2.2 Wherever possible, this should be achieved through the implementation of SUDS. Source control should be considered firstly. There may be opportunities to deliver SUDS though integrated solutions for collections of strategic sites. The future ownership and maintenance of SUDS systems should be discussed at the planning application stage with the relevant sections of the LPA (including Highways and Drainage), United Utilities and the Environment Agency. More detail on SUDS is available in Appendix G.
- 4.6.2.3 The developer should liaise closely with the local authority drainage engineer, the Environment Agency and United Utilities to determine appropriate discharge rates. The developer should prove that surface water discharges from the site will not have an adverse impact on flood risk elsewhere, with reference to investment planning by United Utilities that may increase the capacity of the sewer network in the area.

Overland flow paths

- 4.6.2.4 Underground drainage systems have a finite capacity and regard should always be given to larger events when the capacity of the network will be exceeded. Hence there is a need to design for exceedance. This should be considered alongside any surface water flows likely to enter a development site from the surrounding area.
- 4.6.2.5 Master planning should ensure that existing overland flow paths are retained within the development. As a minimum the developer should investigate, as part of a FRA, the likely depths and extents of surface water flooding on a development site when the surface water flooding maps produced for the Level 2 SFRA indicate that there is a risk of surface water flooding. This is a precautionary, but an appropriate approach to reduce the risk of flooding to new developments. Green infrastructure should be used wherever possible to accommodate such flow paths. Floor levels should always be set a minimum of 300mm above adjacent roads to reduce the consequences of any localised flooding.
- 4.6.2.6 The effectiveness of a flow management scheme within a single site is heavily limited by site constraints including (but not limited to) topography, geology (soil permeability), development density, existing drainage networks within the site and surrounding area, adoption issues and available area. The design, construction and ongoing maintenance regime of such a scheme must be carefully defined at an early stage and a clear and comprehensive understanding of the catchment hydrological processes (i.e. nature and capacity of the existing drainage system) is essential.

4.6.3 Critical Drainage Areas

- 4.6.3.1 Certain locations are particularly sensitive to an increase in the rate of surface water runoff and/or volume from new development. There are generally known local flooding problems associated with these areas. These areas have been defined as Critical Drainage Areas (CDAs) in the SFRA. Specific drainage requirements are required in these areas to help reduce local flood risk. The SFRA has designated CDAs as high flood risk areas.
- 4.6.3.2 These are areas with complex surface water flooding problems that would benefit from a drainage strategy, which is most effectively done in a Surface Water Management Plan.
- 4.6.3.3 The CDAs provided in the SFRA should be refined over time as more detailed information on flood risk and local flood management assets, including sewered catchments, becomes available.
- 4.6.3.4 In these areas, a detailed FRA is required regardless of which Flood Zone that applies for all developments over 0.5 hectares. This should demonstrate that new development is not at risk from flooding from existing drainage systems or potential overland flow routes. It should also demonstrate that the development will not adversely affect existing flooding conditions by the use of appropriate mitigation measures. The FRA should define and address the constraints that will govern the design of the drainage system and layout of the development site.

4.6.3.5 The Environment Agency Standing Advice allows developers to screen online for the level of flood risk assessment that is appropriate for a development with regard to the PPS25 Flood Zones. This highlights the need for a FRA in Flood Zones 2 and 3 and in Flood Zone 1 where there are critical drainage problems. The Standing Advice notes that for developments in Flood Zone 1 FRA Guidance Note 1¹¹ should be followed:

'In areas where the Local Planning Authority has identified drainage problems through a Strategic Flood Risk Assessment or Surface Water Management Plan and they have indicated that a formal flood risk assessment is required'. FRA Guidance Note 1 requires FRAs to provide 'Proposals for surface water management that aims to not increase, and where practicable reduce the rate of runoff from the site as a result of the development (in accordance with sustainable drainage principles, and the Local Planning Authority's published SFRA).'

4.6.3.6 Proposals for development in Critical Drainage Areas as defined by this SFRA should follow the guidance and standards as set out below for developments that are within any flood zone.

Allowable discharge rates

- 4.6.3.7 Development should seek to reduce existing local flooding problems and not add to them. The AGMA authorities are currently developing drainage standards for developments within Critical Drainage Areas. In the interim the following guidance should be followed for all new developments:
 - Development should deliver Greenfield runoff on Greenfield sites up to a 1 in 100 year storm event, considering climate change
 - Development should aim for a minimum reduction in surface water runoff rates of 50% for Brownfield sites, with an aim of reducing runoff to Greenfield rates up to a 1 in 100 year storm event, considering climate change
 - Development should be designed so that there is no flooding to the development in a 1 in 30 year event and so that there is no property flooding in a 1 in 100 year plus climate change event
- 4.6.3.8 Over time, it is envisaged that local authorities will commission drainage strategies (see below) to determine in more detail and establish the evidence base for set reductions in surface water runoff from development sites. With regard to this, the developer should liaise closely with the Environment Agency, United Utilities and LPA as soon as possible to determine an appropriate reduction in runoff rate and volume with reference to discharge limits as laid down by any completed SWMP or drainage strategy for that area.
- 4.6.3.9 Wherever possible, this should be achieved through the implementation of SUDS. Source control should be considered firstly. There may be opportunities to deliver SUDS though integrated solutions for collections of strategic sites. The future ownership and maintenance of SUDS systems should be discussed at the planning application stage with the relevant sections of the LPA (including Highways and Drainage), United Utilities and the Environment Agency. This approach should be taken unless the developer can demonstrate that this is not feasible and that there will be no adverse impact caused by the development elsewhere.

¹¹ Environment Agency. Flood Risk Assessment (FRA) Guidance Note 1, Development Greater Than 1 Hectare (ha) in Flood Zone 1 (and Critical Drainage areas less than 1ha) Can be accessed online at http://www.environment-agency.gov.uk/static/documents/Research/FRAGuidanceNote1.pdf

4.6.3.10 This is supported by Category 4 of the Code for Sustainable Homes, which requires developers to ensure that peak run-off rates and run-off volumes will be no greater than the pre-development conditions as a minimum. However, the code recommends that attenuation of the additional flows caused by development should be related to the degree of flood risk in an area. In 'high flooding risk areas', 100% of the additional volume should be attenuated.¹² Planning Policy Statement 1¹³ allows local planning authorities to stipulate high levels of the code where there are local circumstances that allow and warrant it. **The SFRA has designated CDAs as high flood risk areas.**

Overland flow paths

4.6.3.11 Developers should follow the advice on managing exceedance and overland surface water flow paths as set out in 4.6.2.4 to 4.6.2.5.

4.6.4 Integrated drainage

- 4.6.4.1 There is the potential for groups of development sites coming forward to share a central and integrated solution for managing surface water runoff. This should be investigated further through a SWMP or a Drainage Strategy, which may or may not be undertaken at the same time as a SWMP. A Drainage Strategy will be required to be prepared by the developer(s) where an integrated solution is necessary, due to issues of land constraints, geology, connection to public sewers and watercourses. Such solutions can provide great benefits besides water management, including providing Green Infrastructure enhancements, recreational facilities, improving biodiversity and making communities a better place to live. Where there are several sites that would share a communal facility, such sites may be funded through developer Section 106 or Community Infrastructure Levy payments. Early discussions with the LA and UU is essential.
- Drainage Strategies can be particularly useful for considering, recommending the 4.6.4.2 implementation of and long term management arrangements for SUDS and setting appropriate runoff rates from new development. They can be used to support a Supplementary Planning Document. A Drainage Strategy would include the timescales for delivering integrated solutions in line with the requirements of PPS12, having considered the delivery programmes of different operating authorities, such as United Utilities and the Environment Agency. The SWMP may identify that a surface water credit system could support such solutions (via Section 106 or Community Infrastructure Levy payments) and deliver reductions in surface water runoff from collections of sites. Such a system would work on the basis that the developer should achieve maximum reductions in runoff on site as the preferred option and in accordance with the allowable discharge rates outlined in the SFRA, as an interim until a Supplementary Planning Document is available (supported by a SWMP/ Drainage Strategy). Where the allowable discharge rates cannot be achieved on site, any residual elements could be bought out to enable investments in strategic and integrated measures that reduce the amount of water in the system within a defined drainage catchment. Drainage Strategies should be used to set surface water runoff standards for all developments within a defined drainage catchment, including considering surface water runoff from windfall sites that may come forward.
- 4.6.4.3 The Level 2 SFRA has made recommendations for SWMPs and Drainage Strategies.

¹² CLG (2006) Code for Sustainable Homes

¹³CLG (2007) Planning Policy Statement: Planning and Climate Change - Supplement to Planning Policy Statement 1

5 Flood Risk Management

5.1 Introduction

- 5.1.1.1 Throughout the risk based approach, the need to take a sequential approach when allocating land for development should always be kept in mind and opportunities taken to minimise flood risk at every stage of the planning process.
- 5.1.1.2 Mitigation measures should be seen as a last resort to address flood risk issues.
- 5.1.1.3 Mitigation measures must be designed to provide an appropriate level of protection to a site for the lifetime of the development. At many sites it may be technically feasible to mitigate or manage flood risk. **However**, the potential impacts of mitigation measures on flood risk to the surrounding community must always be considered and where the depth of flooding is substantial, these mitigation measures may result in practical constraints to development with significant financial implications. There will always be a residual risk remaining that should be accounted for through effective emergency planning.
- 5.1.1.4 The minimum acceptable standard of protection against flooding for new property within flood risk areas is the 1 in 100 year flood event for fluvial flooding, with an allowance for climate change over the lifetime of the development.

5.2 Strategic Approach

- 5.2.1.1 Mitigation measures should be considered on a strategic basis that avoids a piecemeal approach and advocates partnership between the LPA and the Environment Agency and integration with wider Environment Agency flood risk management works and strategies (e.g. River Irwell CFMP and Upper Mersey CFMP).
- 5.2.1.2 The SFRA identified the need for a strategic vision when it comes to managing flood risk to new development that is explored in Volume III Section 9. Developers should refer to the recommendations outlined with this strategy when considering on-site mitigation.
- 5.2.1.3 The SFRA identified the need for a strategic vision when it comes to managing flood risk to new development. As a summary, taking a strategic approach requires all that are involved in flood risk management to consider:
 - Avoidance of development in flood risk areas
 - The sequential approach to site layout, substituting higher vulnerability development in lower flood risk areas and considering flooding from all sources
 - Wherever possible, using open land or green infrastructure to reduce risk, provide compensatory flood storage or serve a sustainable drainage function
 - Adopting mitigation solutions that fit with the wider vision of the community in managing flood risk. In significant flood risk areas, developers should aim to reduce risk to the wider community
 - Adopting SUDS
 - Preparing emergency flood plans

5.3 **Potential mitigation measures**

- 5.3.1.1 Table 5-1 provides links to the evidence in the SFRA Volume II and III, to identify what development could be seen as appropriate with a certain flood risk area and what mitigation measures could potentially be adopted to reduce the level of risk. As above, all mitigation measures should fit in with the wider strategic approach advocated for a community and should ensure that there is no increase in flood risk to the surrounding community. The developer should liaise closely the Environment Agency and Development Management as to what mitigation measures may be suitable.
- 5.3.1.2 The Oldham SFRA Volume III (Section 9) summarised a range of mitigation measures that could be appropriate. A summary of the measures has been reproduced in Appendix H.

Table 5-1: Possible Mitigation Measures

Flood Source	SFRA Data Source	Risk Indicator	Appropriate Development ¹	Comments	Possible Mitigation
Fluvial Depths & Hazards SFRA Volume Map 2.1-2.8 a 2.13 to 2.14	SFRA Volume II Map 1.4 (A to G) SFRA Volume III	Flood Zone 1	EI, WC, HV, MV & LV	All development is viable within Flood Zone 1; however other sources of flooding should be investigated.	None required for fluvial but may be for other sources.
	Map 2.1-2.8 and 2.13 to 2.14	Flood Zone 2 <0.3m depths Very Low Hazard	EI, WC, HV, MV & LV	Low depth and hazards can be manageable with minor mitigation required.	Sequential approach to site layout. Flood resilient construction.
	F F F S C S S C F	Flood Zone 3 <0.3m depths Very Low Hazard	EI, WC, MV & LV	Low depth and hazards can be manageable with minor mitigation required.	Sequential approach to site layout. Flood resilient construction.
		Flood Zone 2 >0.3 depths Dangerous for some and/or Dangerous for all	EI, WC, MV & LV	All development must be designed to remain safe up to the 1 in 100 + climate change event, however residual risks must be considered if the development is situated behind defences.	Sequential approach to site layout. Raising floor levels may be a possibility. Additional measures can be put in place to reduce damage to existing properties and increase the speed of recovery (i.e. temporary and permanent barriers and wet- proofing). These measures should not be relied on as the only mitigation method. Emergency planning must be considered and safe access and egress routes should be identified.
		Flood Zone 3	EI, WC, MV &	Sustainable mitigation and flood	Sequential approach to site layout. Raising

Flood Source	SFRA Data Source	Risk Indicator	Appropriate Development ¹	Comments	Possible Mitigation
		0.3–1m depths Dangerous for some	LV	risk management may be feasible for both housing and employment purposes. There is a greater likelihood of passing the Exception Test. Areas may still have residual risks.	floor levels is acceptable and they should be raised to 600mm above the maximum water level during a 1 in 100 year flood event plus climate change. Compensatory flood storage must be provided, and should be on a level for level, volume for volume basis. Emergency planning must be considered and safe access and egress routes should be identified.
		Flood Zone 3 1–1.5m depths Dangerous for most	EI, WC & LV	Mitigation is likely to be costly and may not be economically justifiable for low value land uses. Housing allocations are not suitable. The likelihood of passing the Exception Test is lower.	Floor level raising for employment purposes is unlikely to be economically viable and employment allocations should be reconsidered in favour of alternative lower risk sites. Emergency planning must be considered and safe access and egress routes should be identified. Opportunities for floodplain and river restoration and/or buffer strips should be investigated.
		Flood Zone 3 >1.5m depths Dangerous for all	None	Flood risk mitigation measures are unlikely to be economically justifiable and all development should be avoided. Development is unlikely to be sustainable and the likelihood of passing the Exception Test is low.	Large mitigation schemes would be required including raised defences. However, this is not a preferred option, as a residual risk of flooding will remain. Compensatory storage must be provided where raised defences remove storage from the floodplain. Emergency planning must be considered and safe access and egress routes should be identified. Opportunities for floodplain and river restoration and/or buffer strips should be investigated.

Flood Source	SFRA Data Source	Risk Indicator	Appropriate Development ¹	Comments	Possible Mitigation
Surface Water	SFRA Volume III Maps 5.1 and 5.2 (A to G)	High, Medium & Low	EI, WC, HV, MV & LV	Although surface water flooding will not directly impact on the spatial allocation of development, it should be considered within site layout. Surface water will also need to be controlled on site.	Opportunities should be sought to open up land were surface water is expected to flow or pool. SUDS should also be adopted to reduce risk on site and to the surrounding community by first storing water and managing run-off rates. The additional guidance for developing in CDAs should be considered if appropriate.
Canals	SFRA Volume III Map 3.1(A to E)	Overtopping and breach	EI, WC, HV, MV & LV	Flood risk from canals is residual. Although this will not directly impact on the spatial planning of development, it should influence building design and finished flood levels.	The risk of canal flooding should be part of the FRA with liaison with LPA, EA and British Waterways. The risk could be mitigated through increasing the freeboard of proposed development finished floor levels. Raising the awareness of the risk is critical.
Reservoirs	SFRA Volume II Map 1.5 (A to G)	Location only	EI, WC, HV, MV & LV	Flood risk from reservoirs is residual. Although this will not directly impact on the spatial planning of development, it should influence site emergency planning. Smaller reservoirs could potentially pose the greatest risk.	The risk of flooding should be assessed as part of the FRA. Smaller reservoirs should be assessed to identify the risk and appropriate mitigation put in place.

¹EI = Essential Infrastructure, WC = Water Compatible, HV = Highly Vulnerable, MV = More Vulnerable, LV = Less Vulnerable Check with Table D.3 of PPS25 to see if Exception Test is required.

6 Guidance for Emergency Planners

The aim of this section is to provide guidance on the use of the SFRA by Emergency Planners. Developers should also refer to the guidance on SFRA maps provided on page vi and background to the SFRA and flood risk concepts in Appendix A and C.

Emergency Planners should use the Guidance in this SFRA User Guide, PPS25 and its Practice Guide to:

- Update Multi-agency Flood Plans
 - Using the overall assessment of flood risk provided in the Level 1 SFRA
 - o Using the assessment of residual risk in the Level 2 SFRA
- Provide advice on developer Flood Plans for new development
 - o Using outputs from the Level 1 and Level 2 SFRAs

• Raise awareness of flood risk from all sources

• Using outputs from the Level 1 and Level 2 SFRAs

6.1 Introduction

6.1.1.1 This section provides guidance on how Local Authority Emergency Planners can use the outputs of the SFRA to update Multi-agency Flood Plans and provide advice on Flood Plans written by developers for new development.

6.2 Emergency planning overview

- 6.2.1.1 Under the Civil Contingencies Act (2004) the council is classified as a category 1 responder. During an emergency such as a flood event, coordination with the other category 1 responders (including the emergency services and the Environment Agency) is essential to guarantee the safety of residents. Under the Civil Contingencies Act, the Local Authority holds a statutory duty to provide civil protection to their communities to ensure human welfare; environmental stability and UK security are not affected. Under the Act, risk assessments and planning is arranged through Local and Regional Resilience Forums (LRF/RRF).
- 6.2.1.2 Oldham Council is part of the Greater Manchester Resilience Form (GMRF). (http://www.gmep.org.uk/ccm/navigation/greater-manchester-resilience-website/)
- 6.2.1.3 GMRF's overall purpose is to ensure that there is an appropriate level of preparedness to enable an effective multi-agency response to emergency incidents that may have a significant impact on the communities of Greater Manchester. Strategic decision-making and resource allocation are determined by reference to the Greater Manchester Community Risk Register (CRR), which considers the likelihood and consequences of the most significant risks facing Greater Manchester over the next 5 years.

- 6.2.1.4 The aim of the SFRA so far has been to try and avoid development in flood risk areas in the first instance. However, it has also been accepted that there is current development in flood risk areas and there will need to be a level of continued regeneration. Minimising flood risk to people, property and the environment should be considered. Flood defences go some way in reducing the current flood risk by providing a standard of protection, however there is still a residual risk associated with them as they can be overtopped or breached. Flood Warnings is an integral part of flood risk management, for which the Environment Agency are the lead authority responsible for warning the public, local authorities and emergency services.
- 6.2.1.5 Along with the Environment Agency Flood Warning systems, there are a range of Flood Plans at a regional and local level, outlining the major risk of flooding and the tactical and operation plan for key responders. These plans are incorporated in Local Authority Major Incident Plans. Figure 6-1 identifies the links between Environment Agency Flood Warning data and regional and local Flood Plans.
- 6.2.1.6 This SFRA contains useful data to allow emergency planning processes to be tailored to the needs of the area and be specific to the flood risks faced. The detailed maps and GIS layers provided should be made available for consultation by emergency planners during an event.

Figure 6-1: Local and Regional Flood Plans

GMLRF – Greater Manchester Local Resilience Forums

6.3 Flood Plan Recommendations

- 6.3.1.1 The SFRA Volume II and III provide a number of flood risk data sources that should be used when producing or update flood plans.
- 6.3.1.2 Plans currently in place or under preparation in Oldham include:
 - Environment Agency Flood Warning Plan
 - Greater Manchester Multi-Agency Flood Plan (draft)
 - Oldham Emergency Management Plan (2007)

- 6.3.1.3 The data in the SFRA can be used to update these Flood Plans and the Local Authority Emergency Planners are advised to:
 - Consider and understand the possibility, likelihood and spatial distribution of all sources of flooding, including fluvial, tidal, surface water and sewer, man-made bodies of water including canals and reservoirs and groundwater flooding, as discussed in the Level 1 SFRA (Vol II) and associated mapping for report. Relevant sections and maps include:
 - Understanding the risk from different sources of flooding (Volume II Section 2)
 - Flood zone maps Maps 1.1 (A to G)
 - Climate change maps Maps 1.3 (A to G)
 - Flood depth maps Maps 1.4 (A to G)
 - Consider and understand the residual risk associated with flood risk management infrastructure including canals using the information provided in the SFRA Volume III.
 - Flood defences, overtopping Volume III (Section 2), Map 2.1-2.14
 - Canal overtopping or breach Volume III (Section 3), Map 3.1 (A to E)
 - Detailed surface water maps Volume III (Section 5), Map 5.1 and 5.2 (A to G)
 - Use the data in the SFRA Volume II and III to:
 - Update the final Greater Manchester Multi-Agency Flood Plan and update to each Local Authority Flood Plan to reflect the above findings
 - Consider the need for evacuation plans for existing vulnerable institutions in the floodplain and other areas at high flood risk
 - Consider reviewing and updating safe evacuation routes and access routes for emergency services from any existing area of flood risk to rest centres, avoiding routes that may be flooded
 - Review the Greater Manchester Community Risk Register (CRR)

6.4 Planning Approval – Flood Plans including flood warning

- 6.4.1.1 As a condition of planning approval flood evacuation plans should be provided by the developer which aim to safely evacuate people out of flood risk areas, using as few emergency service resources as possible. These plans should detail any prearranged emergency arrangements including dry evacuation routes, flood warning, location of rest centres and safe havens. It is recommended that any flood evacuation plan written is forwarded onto Oldham Council as appropriate and the Environment Agency for review. The plan owner must put in place the plan if the development goes ahead, and liaise with the council regarding maintenance of and updating the plan.
- 6.4.1.2 It must be noted that the emergency services are unlikely to regard developments that increase the scale of any rescue that might be required as being safe.
- 6.4.1.3 According to the PPS25 Practice Guide, flood warning and evacuation plans should include the information highlighted in Table 6-1. The table also provides links to data provided in the SFRA Volume II and III which should be used to inform their preparation. More detailed analysis should be done within a site-specific FRA that should inform these plans.

	SFRA Evidence			
How flood warning is to be provided				
Availability of existing flood warning system	Volume II Maps 1.2 (A to G			
Rate of onset of flooding	Volume III animations			
How flood warning is given	-			

Table 6-1: Flood Warning, Evacuation Plans and SFRA Evidence

	SFRA Evidence					
What will be done to protect the development and contents						
How easily damaged items will be relocated	-					
The availability of staff/occupants/users to respond to a flood warning	-					
The time taken to respond to a flood warning	-					
Ensuring Safe occupancy and access to and from the development						
Occupants awareness of the likely frequency and duration of flood events	Volume II Maps 1.2 (A to E)					
Designing and locating safe access routes	Volume III Map 2.1-2.14					
Preparing evacuation routes	Volume III Map 2.1-2.14					
Identify safe locations for evacuees	Volume III					
Vulnerability of occupants	Volume I Appendix F					
Expected time taken to re-establish normal use following an event	-					

6.5 Flood Awareness

6.5.1.1 Emergency Planners should also use the outputs from the SFRA Volume II and III to raise awareness within local communities. This should include raising awareness of measures that people can take to make their homes more resilient to flooding from all sources and encouraging all those at fluvial flood risk to sign up to the Environment Agency's Floodline Warnings Direct service.

JBA consulting

Appendices

A. Flood Risk Concepts

A.1 Introduction

Flooding is a natural process and can happen at any time in a wide variety of locations. It constitutes a temporary covering of land not normally covered by water and presents a risk when people, human and environmental assets are present in the area which floods. Assets at risk from flooding can include housing, transport and public service infrastructure, commercial and industrial enterprises, agricultural land and the environmental and cultural heritage.

Climate change predictions are that flood risk will increase due to more frequent severe storms bringing higher intensity rainfall and increasing run-off from land and buildings. This will cause rivers and streams to experience higher than normal flood flows and levels, and sewers and drains to surcharge more frequently than at present. The focus of activity in meeting these challenges will in future be on flood risk management as opposed to simply providing flood defences. It is now widely recognised that whilst we can't always prevent flooding occurring, we can manage the risks of it happening and reduce the consequences when flooding does happen.

All operating authorities should aim to reduce flood risks through a variety of measures including:

- Directing development away from flood risk areas wherever possible
- Ensuring planning activities locate vulnerable land uses away from high flood risk areas
- Providing flood warning and emergency planning activities in flood risk areas
- Generally raising awareness of flood risks amongst vulnerable communities
- Constructing and maintaining appropriately designed surface water sewers and culverts
- Using temporary and demountable flood defences and various flood prevention systems to buildings where appropriate
- Constructing new flood defences where they are sustainable, and improving and maintaining those already existing
- Constructing weirs, sluices and other flood flow control/management structures

Pro-active land use planning has a key role to play in flood risk management as it is one of the few activities that can result in the avoidance of flood risk as opposed to other activities that can only hope to reduce it. As shown in Figure 4-1, effective flood risk management through the planning system is achieved through a hierarchy where:

- Avoidance of inappropriate development in high risk zones must take priority, before,
- **Substitution** of lower vulnerability uses where avoidance is not possible is considered. Only if avoidance and substitution are not possible,
- Control or Mitigation of the risks through a variety of techniques should be used.

Flood risk assessment at all levels of planning and for all major developments is critical to inform decision making by planners and developers.

A.2 Sources of Flooding

Flooding can occur from many different and combined sources and in many different ways. The key sources of flood risk across Oldham have been discussed in SFRA Volume II Section 2.

Different types and forms of flooding present a range of different risks and the flood hazards related to speed of inundation, depth and duration of flooding can vary greatly. Different sources of flooding are shown in Figure A1.

With climate change, the frequency, pattern and severity of flooding are expected to change and the consequences of flooding will increase.

Figure A1: Flooding From All Sources

Major causes of flooding are:

Fluvial Flooding

Flooding from watercourses is associated with the exceedance of channel capacity during higher flows. The process of flooding from watercourses depends on a number of catchment characteristics including: geographical location, variation in rainfall, steepness of the channel and surrounding floodplain and infiltration and rate of runoff (linked to land use i.e. degree of urbanisation). It is possible to generalise catchments into; large and relatively flat or small and steep, the two giving very different responses during large rainfall events.

According to PPS25, "in a large, relatively flat catchment, flood levels will rise slowly and natural floodplains may remain flooded for several days, acting as the natural regulator of the flow. In small, steep catchments, local intense rainfall can result in the rapid onset of deep and fast-flowing flooding with little warning. Such "flash" flooding, which may only last a few hours, can cause considerable damage and possible threat to life."

The form of the floodplain, either natural or urbanised, can influence flooding from watercourses. The location of buildings and roads can significantly influence flood depths and velocities by altering flow directions and reducing the volume of storage within the floodplain. Critical structures such as bridge and culverts can also significantly reduce capacity creating pinch points within the floodplain. These structures are also vulnerable to blockage by natural debris within the channel or by fly tipping and waste.

Surface Water Flooding

Flooding of land from surface water runoff is usually caused by intense rainfall that may only last a few hours and follows natural valley lines, creating flow paths along roads and through and around developments and ponding in low spots, which often coincide with fluvial floodplains in low lying areas. Hence any area at risk of fluvial flooding will almost certainly be at risk of surface water flooding.

Flooding in urban areas can also be attributed to sewers. Sewers are normally designed to a maximum of a 1 in 30 year design standard and hence sewer flooding problems will often be associated with more frequent storm events, when sewers can become blocked or fail. In the larger events that are less frequent but have a higher consequence, surface water will exceed the sewer system and flow across the surface of the land, often following the same flow paths and ponding in the same areas as overland flows.

Both 'Making Space for Water' and 'Future Water' recognise the importance of integrated urban drainage and the summer flooding of 2007 highlighted that surface water flooding can cause mass distress, damage and disruption. The Foresight Report (2004) estimated that 80,000 properties are at very high risk from surface water flooding (1 in 10 chance of occurring in any one year).

Groundwater Flooding

The occurrence of groundwater flooding is usually very local and unlike flooding from rivers and the sea, does not generally pose a significant risk to life due to the slow rate at which the water level rises. However, groundwater flooding can persist for a long period and cause significant damage to property, especial in urban areas, if not considered in development planning. In most cases groundwater flooding cannot easily be eliminated although the impact on buildings can be mitigated to some extent through various measures.

Flooding from Drainage Systems

Flooding from artificial drainage systems occurs when flow entering a system, such as an urban storm water drainage system, exceeds its discharge capacity, it becomes blocked or it cannot discharge due to a high water level in the receiving watercourse;

Foul sewers and surface water drainage systems are spread extensively across the urban areas with various interconnected systems discharging to treatment works and into local watercourses.

Typically foul systems will comprise a network of drainage sewers, sometimes with linked areas of separate and combined drainage, all discharging to sewage treatment works. Combined Sewer Overflows (CSOs) provide an overflow release from the drainage system into local watercourses or surface water systems during times of high flows.

Surface water systems will typically collect surface water drainage separately from the foul sewerage and discharge directly into watercourse.

A major cause of sewer flooding is often due to the connection of surface water drains to discharge into the combined sewer systems. Sewer capacity can then become an issue in large rainfall events causing the backing up of flood waters internally within properties or discharging through manholes.

Insufficient capacity can also become an issue where urban areas develop over time, with improved sewerage infrastructure provision not always provided to accommodate the additional flows.

English and Welsh water companies are required to maintain a register of flooding incidences due to hydraulic capacity problems on the sewage network. This database identifies properties where flooding has occurred on a frequency of 1 in 5 years and 1 in 10 years. The database is known as DG5 and DG10 registers. A register for 1 in 20 years is also recorded which includes properties under investigation.

Whilst this data can give an idea of those areas with limited drainage capacity, it must be acknowledged that it is a register of properties that have flooded due to the hydraulic inadequacies of the sewer systems, not properties at risk of flooding. Therefore it has limiting usefulness in predicting future flooding.

Data generated using hydraulic network models such as InfoWorks potentially provides a very useful tool with which to predict more widespread potential for sewer flooding and the use of such tools should be investigated during a Surface Water Management Plan.

Flooding from Reservoirs

Reservoirs can be a major source of flood risk, as experienced during the 2007 summer floods, where 18 reservoirs were affected across England. Whilst the probability of dam failure or breaching occurring is very small, the consequences of such an event can be devastating thereby presenting a risk of flooding which has to be considered.

Flooding from reservoirs is noted as an issue within the Pitt Review Recommendations and acknowledged by Hilary Benn, the Secretary of State for Environment, Food and Rural Affairs. £1million has been pledge to improve reservoir safety specifically to produce inundation mapping for all reservoirs falling under the Reservoirs Act (i.e. those with a capacity of over 25,000 cubic metres).

Reservoirs are classified on a consequence of failure basis outlined below in Table A1 and it is now suggested that a better risk-based approach to reservoir safety is needed, focusing on those reservoirs that pose the greatest risk to the public, even if they are not currently covered by the Act.

Dam Category	Potential Consequence of Reservoir Failure
А	At least 10 lives at risk and extensive property damage
В	Fewer than 10 lives at risk or extensive property damage
С	Negligible risk to human life but some property damage
D	Negligible risk to human life and very limited property damage

Table A1: Reservoir Consequence Classification

The Environment Agency is currently producing simplified inundation maps for all reservoirs under the Reservoirs Act as required by Recommendation 57 of the Pitt Review. Trial projects have been run in the North West to develop the specification for these maps and the Environment Agency has been producing maps for all reservoirs under the Act.

The Water Act 2003, which amended the Reservoirs Act 1975, requires all reservoir undertakers to prepare Flood Plans for those reservoirs where the dam failure could put people's lives at risk or lead to major damage.

The reservoir Flood Plans will include:

- An inundation analysis to identify the extent and severity of flooding which could result from an uncontrolled release of water (i.e. breaching or failure)
- An on-site plan setting out what the undertaker would do in an emergency to try and to contain and limit the effects of the incident
- A communications plan with external organisations, mainly the emergency services

Defra is currently funding a project to produce a 'Guide to Emergency Planning for UK Reservoirs', which will ultimately use the Flood Plans.

Until the new Water and Floods Bill is implemented it is unclear how reservoir safety, flood risk from breach and planning will be dealt with. In the meantime any allocations or applications for development immediately downstream of a reservoir should be considered carefully in liaison with the Environment Agency. It should be noted that the hazard is well

managed through legislation and it is unlikely that the impact zone downstream of a reservoir would be a reason to stop permitted development. It is likely that the flood risk would be mitigated through emergency planning.

Flooding from Canals

Canals are artificial navigable watercourses, many of which date back to the 18th century. In many places they are embanked and raised above the surrounding land. Locks on canals help pass boat traffic up and down slopes. Canals are fed from reservoirs and watercourses and have overflow structures that pass water out of the canal when levels are high to lower level watercourses. Many of the inflow and outflow structures on canals are over 200 years old when they were designed to a 'rule of thumb'.

Flooding from canals can be caused by a variety of circumstances:

- During times of high flows in feeder watercourses, excess water can enter canals
- Reservoir failure could divert excess water into a canal
- Canals can intercept surface water running off from higher ground
- Surface water or excess water in a culverted watercourse that crosses under a canal can build up behind an embanked section of canal, which then causes the canal to fail or excess water to enter a canal
- The clay lining of a canal could fail, resulting in failure of an embanked section, dependent on local geology relatively permeable materials such as sand are more prone to failure than impermeable clay

In the event that a canal does fail, the height that the canal is elevated above surrounding land will affect to some degree the amount of flood hazard that could be caused by deep or fast flowing debris laden water, alongside the cause of failure (there will be a greater volume of water from failures caused by water building up behind an embankment). The amount of water that can escape depends on the pound length, which is the distance between two locks because the maximum volume of water that will outflow will be contained between the two locks or time taken for an operator to react to a failure to prevent further escape. The risk of flooding from canals is reduced by regular inspection by British Waterways or others to identify any problems with inflow and outflow structures, canal lining or embankments.

Defence Failure

The condition of existing flood defences is an important consideration for local authority planners when allocating new development. PPS25 considers that defended areas (i.e. those areas that are protected to some degree against flooding by the presence of a formalised flood defence) are still at risk of flooding, and therefore sites within these areas must be assessed with respect to the adequacy of the defences.

The condition of existing defences is provided in the form of a 'rating' (1 to 5), and is a reflection of any signs of 'obvious' structural problems. The condition rating is determined on the basis of visual inspection, focussing on obvious signs of structural defect (e.g. slippage, cracking, poor maintenance), designed to inform the maintenance programme. The Environment Agency's National Flood and Coastal Defence Database (NFCDD) condition ratings are shown in Table A2.

Condition Rating	Condition	Condition Description
1	Very Good	Fully serviceable.
2	Good	Minor defects.
3	Fair	Some cause for concern. Requires careful monitoring.
4	Poor	Structurally unsound now or in the future.
5	Very Poor	Completely failed and derelict.

Table A2: NFCDD Condition Ratings for Flood Defences

The condition of existing flood defences and whether they will continue to be maintained and/or improved in the future, is an issue than needs to be considered as part of the risk based sequential approach and in light of this, whether proposed land allocations are appropriate and sustainable. In addition, detailed FRAs will need to explore the condition of defences thoroughly, especially where these defences are informal and contain a wide variation of condition grades.

Defences that are not in good condition could be prone to failure during a flood event. Defences that offer a low standard of protection are likely to overtop during flood events that are more extreme than the event that they were designed to protect against. Flood risk associated with defence infrastructure is residual; however, the risks can be significant due to sudden onset and velocities reached by flood waters should a defence overtop or fail.

Flood Warning

The Environment Agency has the lead role in providing flood warnings in England and Wales. The aim of the flood warning service is to reduce risk to life, distress to people and damage to property caused by flooding by providing accurate, timely flood warnings to residents within the floodplain of rivers, estuaries and coasts; to the media and partner organisations.

It is crucial that people at risk receive appropriate flood warnings and take action to protect themselves and their property. Within the Environment Agency corporate plan "Creating a Better Place¹⁴" the Agency has highlighted three main targets:

- To have 80% of properties at risk in the floodplain in England and Wales receiving an appropriate flood warning service
- 75% of people who live in flood risk areas take appropriate action by 2011
- To have major incident plans in place for high flood risk areas

Currently the Environment Agency does not operate any flood warning service for Oldham. The Upper Mersey Flood Forecasting Improvement Report reveals plans to implement 15 new flood warning areas in the Upper Mersey catchment. This will provide flood warning to 75% of the designated properties at risk. The proposed warning areas include Delph on the River Tame¹⁵.

Flood Warning Codes include:

Flood Watch	Flood Watch	"flooding of low-lying land and roads is expected"
Flood Warning	Flood Warning	" flooding of homes and businesses is expected"
Severe Flood Warning	Severe Flood Warning	"severe flooding is expected"
All Clear	All Clear	"all clear or receding floodwaters"

The flood warnings are used to reduce the overall impact of flooding of people and property by lowering the vulnerability of the receptor. This is done by providing a warning which can then be used to remove people at risk or to relocate valuable possession to higher levels.

¹⁴ Environment Agency (2006) Creating a Better Place: Corporate Strategy 2006-2011

¹⁵ Upper Mersey CFMP, Environment Agency 2008

In response to the summer 2007 floods, the Pitt Review stated that the Environment Agency flood warning service needed to be improved to stimulate a more effective response from response agencies and the general public.

In order to tackle these issues the Environment Agency set-up the Flood Warning Service Improvements Project (FWSIP) in December 2008. The project had three objectives:

To implement new public flood warning codes, which are adaptable for all sources of flooding and are effective at promoting action by people to reduce the impact of floods on their lives and livelihoods,

To develop an integrated service which provides professional partners with greater access to expert advisors during an event and a rationalised set of messages/alerts/warnings from the Met Office, Flood Forecasting Centre and the Environment Agency and

To make the Environment Agency river level information available to the public on the internet.

The biggest change will be the development of new public warning codes. These include

- Flood Alert "Flooding is possible. Be prepared."
- Flood Warning "Flooding is expected. Immediate action required."

These new public warning codes will be put into effect from spring 2010.

Overview

Flooding in urban areas can come from a variety of sources and when flooding occurs it is often not clear where the water has come from. The draft 'Flood and Water Management Bill' defines local flood risk, for which local authorities will have a local leadership role, as the risk of flooding from ordinary watercourses (smaller watercourses that are not under the jurisdiction of the Environment Agency), surface water and groundwater.

Prior to the major flood events in summer 2007, the understanding of non Main River flooding was based on anecdotal evidence or described within Critical Ordinary Watercourse (COW) investigations undertaken by the Environment Agency. Little data could be abstracted from the water companies on sensitive drainage catchments where runoff impacts of new development could be significant on combined sewer systems. However, a significant proportion of recent flood insurance claims are due to flooding from non Main River sources, so this issue will become larger with climate change.

Historically the adopted approach in many SFRAs has been not to consider other sources of flooding as a spatial or strategic issue.

Summer 2007 provided a stark reminder that the significance of capacity exceedance of artificial and natural drainage systems can be severe for many communities. Therefore a clear example was provided that flooding from all sources should be scoped into a SFRA and they should be taken into account through the planning system, and that new methods of rapid screening of these risks are required. On the back of the Pitt review, the Environment Agency has prepared a national map showing areas susceptible to surface water flooding. This was developed by JBA from research for the Making Space for Water programme and has been used within this SFRA.

Development can increase flood risk elsewhere in the following ways:

- Upstream by restricting the capacity and conveyance function of the watercourse and floodplain system
- Downstream by decreasing the volume available for flood storage on the floodplain, altering flow routes on the floodplain or by changes to the channel which can increase the flow discharged to downstream locations
- By increasing run-off from reduced permeability surfaces, such as roads, roofs and car parks

A.3 Flooding Likelihood & Consequence

Flood risk is generally accepted to be a combination of the likelihood of flooding and the potential consequences arising. It is assessed using the source – pathway – receptor model as shown in Figure A2 below. This is a standard environmental risk model common to many hazards and should be starting point of any flood-risk assessment. However, it should be remembered that flood risk can occur from many different sources and pathways and not simply those shown in the simple form below.

Figure A2: Source – Pathway – Receptor Model

The principal sources are rainfall or higher than normal sea levels, the principal pathways are rivers, drains, sewers, overland flow routes and river and coastal floodplains and their defence assets and the receptors can include people, their property and the environment. All three elements must be present for flood risk to arise. Mitigation measures have little or no effect on the sources of flooding but they can block or impede pathways or remove receptors.

The planning process is primarily concerned with the location of receptors, taking appropriate account of potential sources and pathways that might put those receptors at risk.

It is important to define the components of flood risk in order to apply this guidance in a consistent manner. Flood risk is a combination of the likelihood of flooding and the potential consequences arising.

Likelihood

The likelihood of flooding is normally expressed as the percentage probability based on the average frequency measured or extrapolated from records over a large number of years. A 1% probability indicates the flood level that is expected to occur on average once in 100 years, i.e. it has a 1 in 100 chance of occurring in any one year.

Considered over the lifetime of development, such an apparently low-frequency or rare flood has a significant probability of occurring. For example a 1% flood has a 25% (1 in 4) chance of occurring at least once in a 25-year period (the period of a typical residential mortgage) and a 50% (1 in 2) chance of occurring in a 75-year period (a typical human lifetime).

Consequence

The consequences of flooding depend on the hazards caused by flooding (depth of water, speed of flow, rate of onset, duration, wave-action effects, water quality) and the vulnerability of receptors (type of development, nature, e.g. age-structure, of the population, presence and reliability of mitigation measures etc).

Flood Risk

Flood risk is then normally expressed in terms of the following relationship:

Flood risk = Probability of flooding x Consequences of flooding

A.4 Flooding Impacts on Property, People & the Environment

Flood impacts maybe direct or indirect, immediate or long term and may affect households, communities and individuals as well as the environment, infrastructure and economy of an area.

Flooding Impacts on People

Flooding has a wide range of social impacts which may be difficult to delineate as they are interconnected, cumulative and often not quantifiable.

In small urban or steep upland catchments which have a very rapid response to rainfall, or with flooding due to infrastructure failure, flood waters can rise very quickly and put life at risk. Even shallow water flowing at 2m/s can knock children and many adults off their feet and vehicles can be moved by water of 300mm depth. The risks rise if the flood water is carrying debris.

The impact on people as a result of the stress and trauma of being flooded, or even of being under the threat of flooding, can be immense. This also extends to whole communities. Long-term impacts can arise due to chronic illnesses and stress. Flood water contaminated by sewage or other pollutants (e.g. chemicals stored in garages or commercial properties) is particularly likely to cause such illnesses, either directly as a result of contact with the polluted flood water or indirectly as a result of sediments left behind.

The degree to which populations are at risk from flooding is therefore not solely dependent upon proximity to the source of the threat or the physical nature of the flooding. Social factors also play a significant role in determining risk. Although people may experience the same flood, in the same area, at the same time, their levels of suffering are likely to differ greatly as a result of basic social differences. These differences will affect vulnerability in a variety of ways including and individuals or community's response to risk communication (flood warning) and physical and psychological recovery in the aftermath of a flood. How individuals and communities experience the impact will also vary depending on their awareness of the risk of flooding, preparedness for the flood event and the existence or lack of coping strategies.

The Environment Agency (North West Region) is undertaking flood hazard studies for locations of known significant risk within the South Area. The purpose of the flood hazard mapping is to help the Environment Agency to answer questions on the potential hazard posed by floods in specific locations. This will enable them to target their services as well as focusing flood warnings and emergency plans to reduce the risk of loss of life through flooding.

Flood hazard is based on a multiplier of flood depth, flood velocity and a debris factor¹⁶ and is presented on the following scale:

¹⁶ Defra and Environment Agency (2006) The Flood Risks to People Methodology, Flood Risks to People Phase 2, FD2321 Technical Report 1, HR Wallingford et al. wrote the report for Defra/EA Flood and Coastal Defence R&D Programme, March 2006.
Table A3: Flood Hazard ratings

Hazard to people	Hazard to people classification
No Hazard	
Very Low Hazard "Flood zone with shallow flowing water or deep standing water"	Caution
Danger for some "Danger: flood zone with deep or fast flowing water"	Includes children, the elderly and the infirm
Danger for most "Danger: flood zone with deep fast flowing water"	Includes the general public
Danger for all "Extreme danger: flood zone with deep fast flowing water"	Includes the emergency services

Flooding Impacts on Property

Flooding can cause severe property damage. Flood water is likely to damage internal finishes, contents, electrical and other services and possibly cause structural damage. The physical effects can have significant long-term impacts, with re-occupation sometimes not being possible for over a year. The costs of flooding are increasing, partly due to increasing amounts of electrical and other sophisticated equipment within developments.

The damage flooding can cause to businesses and infrastructure, such as transport or utilities like electricity and water supply, can have significant detrimental impacts on local and regional economies. The long term closure of businesses, for example, can lead to job losses and other economic impacts.

Placing new development or regenerating in flood risk areas has its additional short and long term costs. The need to build resistant and resilient properties could significantly increase overall costs of development, whilst ongoing maintenance and insurance increase future expenditure.

Flooding Impacts on the Environment

Environmental impacts can be significant and include soil erosion, bank erosion, land sliding and damage to vegetation as well as the impacts on water quality, habitats and flora and fauna caused by bacteria and other pollutants carried by floodwater.

Flooding can have a beneficial role in natural habitats. Many wetland habitats are dependent on annual flooding for their sustainability and can contribute to the storing of flood waters to reduce flood risk elsewhere. It is important to recognise the value of maintenance or restoration of natural riparian zones such as grasslands which protect the soils from erosion and 'natural' meadows which can tolerate flood inundation. The use of Green Infrastructure throughout the river corridor can also play a vital role in enhancing the river environment as well as safeguarding land from future development, protecting people and buildings from flooding and reducing flood risk downstream.

A natural floodplain can help accommodate climate change and improve the quality of rivers and associated wetlands to help achieve 'good status' by 2015 under the Water Framework Directive. Meeting WFD objectives involves not only ecosystems, water quality, drought and flood impact considerations but also the physical characteristics and morphology of the river channel, floodplain and associated structures.

B. Flood Risk Assessment Hierarchy

Flooding is a natural process and does not respect political demarcations or administrative boundaries; it is influenced principally by natural elements of rainfall, tides, geology, topography, rivers and streams and man made interventions such as flood defences, roads, buildings, sewers and other infrastructure. As was seen in the summer 2007 floods, flooding can cause massive disruption to communities, damage to property and possessions and even loss of life.

For this reason it is important to avoid developing in flood risk areas in the first instance. Where this is not possible development should be directed to areas with the lowest possible level of flood risk. Having exhausted all opportunities to direct development away from areas of flood risk then the allocation of land for development must consider the vulnerability of the proposed land use to flooding and take measures to minimise flood risk to people, property and the environment. This is the thrust of the risk based sequential approach to managing flood risk and it is the backbone of PPS25.

Current Government policy requires local authorities to demonstrate that due regard has been given to the issue of flood risk as part of the planning process. It also requires that flood risk is managed in an effective and sustainable manner and where new development is as an exception necessary in flood risk areas, the policy aim is to make it safe without increasing flood risk elsewhere and wherever possible reduce flood risk overall.

Within the hierarchy of regional, strategic and site-specific flood-risk assessments, a tiered approach ensures that the level of information is appropriate to the scale and nature of the flood-risk issues and the location and type of development proposed, avoiding expensive flood modelling and development of mitigation measures where it is not necessary. Figure B1 highlights the hierarchical approach to flood risk assessment.

As stated in PPS25 the three principle levels of assessment comprise:

- Regional Flood Risk Appraisal (RFRA) a broad overview of flood risk issues across a region to influence spatial allocations for growth in housing and employment as well as to identify where flood risk management measures may be required at a regional level to support the proposed growth.
- Strategic Flood Risk Assessment (SFRA) an assessment of all types of flood risk informing land use planning decisions. This will enable the LPA to apply the Sequential Test in PPS25 and allocate appropriate sites for development, whilst identifying opportunities for reducing flood risk.
- Site Specific Flood Risk Assessment (FRA) site or project specific flood risk assessment to consider all types of flood risk associated with the site and propose appropriate site management and mitigation measures to reduce flood risk to and from the site to an acceptable level.

Implementation of the sequential risk-based approach requires forward planning. Policy decisions are best made within RSSs and LDF/LDDs, guided by information on flood risk, ensuring that the allocation of land inappropriate for development does not unnecessarily raise expectations of landowners and developers. Policy decisions should be informed through the preparation of RFRAs and SFRAs. These assessments are broad-brush assessments of the risk of flooding, to guide strategic planning decisions. They involve the collection and collation of data on flooding and flood-risk management to provide information at the appropriate level of detail to allow decision-makers to:

- Prepare appropriate policies for flood-risk management within RSSs and LDFs
- Produce a strategic understanding of the scale, extent and nature of the flood risk at a community level and how that would alter with any proposed development
- Apply a risk-based, sequential approach, providing risk data to confirm the compatibility between the flood risk vulnerability and inform the Exception Test and of the proposed allocation and the Flood Zone
- Inform the strategic environmental assessment of RSSs and LDFs
- Translate the national guidance into locally specific guidance, including the identification of areas of floodplain that should be safeguarded for flood management purposes
- Identify the level of detail required for site-specific flood-risk assessments in particular locations
- Determine the acceptability of flood risk in relation to emergency planning capability and how the existing and proposed community would respond to a flood event

B.1 Greater Manchester Sub-Regional SFRA

The Greater Manchester sub-regional SFRA was published in August 2008 on behalf of the Association of Greater Manchester Authorities (AGMA). The main objective of the SFRA was to *"bring together existing information and identify where further, more detailed assessments are required."*

JBA consulting

The Greater Manchester sub-regional SFRA was undertaken to provide a baseline and scope from which more detailed District-Level assessments can be completed. The principal aims of the SFRA were to:

- 1. To assess and identify the different levels of flood risk (high, medium or low) and sources of flooding (main river, surface water, canal, reservoir etc) across Greater Manchester, at both the sub-regional level (using river catchments) and District level and to map these for statutory land use planning purposes.
- 2. To undertake District flood risk assessments that will supplement current policy guidelines (i.e. PPS25) and provide a 'risk based' approach to policy making and development management within Greater Manchester. This was intended to provide clarity and inform both local authority officers and developers, ensuring that, where flood risk is identified as a relevant issue that must be addressed as part of the application process, the degree of mitigation required is appropriate to the scale of development and/or risk faced.

The Greater Manchester sub-regional SFRA is an excellent example of a high level document, which introduced the concept of flood risk to all Greater Manchester authorities and the hydrological connectivity that links each council together. By carrying out such a strategic document, it has allowed a partnership and familiarity to be created between the local authorities and key stakeholders in flood risk issues and the need for a greater understanding and single belief in flood risk management.

The Greater Manchester sub-regional SFRA carried out important ground work and data collection, which has been used in the development of the SFRA. However, where there were data gaps (such as at Snipe Clough and risk from other sources), part of the SFRA remit has been to build on the AGMA work. Therefore, the SFRA is a 'Hybrid' SFRA as it fills the gaps in the sub-regional SFRA and also fulfils the criteria for a Level 2 SFRA.

It was also recommended in the Greater Manchester sub-regional SFRA be kept as a 'living' document and to help facilitate the process, a 'Flood Risk Library' be created. This should be used as "a single point within AGMA for the collection and cataloguing of flood risk data relevant to the sub-region." This information would include completed FRAs, records of flood events and updated flood risk information and studies for the Environment Agency and other organisations. The SFRA should fit into the Flood Risk Library and be used to update the Greater Manchester sub-regional SFRA data gaps if required or simply used as separate source of flood risk information.

C. The Planning Framework

C.1 Introduction

The purpose of this section of the report is to identify and outline those high level documents which must be taken into account in preparing this SFRA, from a national to a local level.

The land use planning process is driven by a whole host of policy guidance on a national, regional and local level. Whilst the majority of these policies are not aimed at mitigating flood risk, there are key links at strategic, tactical and operational levels between land use and spatial planning (Regional and Local Government), and Flood Risk Management (FRM) planning (Environment Agency), which should be considered as part of a planned and integrated approach to delivering sustainable development.

The sustainability appraisal will help draw together these links and balance the application of wider social, economic and environmental planning policy and guidance. Flood risk assessment is required at all levels of the planning process and for all major developments in flood risk areas; these play an increasingly important role in assisting effective delivery of key planning objectives.

C.2 Flood Risk Management Drivers

The principal FRM policy drivers are brought together in the Government's recently released draft Flood and Water Management Bill and it is an important part of the Government's response to Sir Michael Pitt's Report on the summer 2007 floods. It also gives effect to a number of commitments in the Government's "Future Water" strategy document. In addition, the draft Bill responds to a number of climate change challenges including more frequent extreme weather events causing a greater risk of flooding and drought, increased population, increased water demand and more water quality problems. It provides the Environment Agency with a strategic overview role for all sources of flood risk in England and Wales and gives local authorities in England a clear leadership role in local flood risk management. An improved integrated and risk based approach is proposed for the future management of flood risk and this requires other concerns such as sustainability, biodiversity and the whole water cycle to be taken into account by local authorities and other relevant organisations.

A core policy thread running through all current policy drivers is the fundamental shift in emphasis from building defences to prevent flooding, to one of managing flood risk by using a suite of measures. All operating authorities are required to invest in the provision of sustainable flood risk management and this includes LPAs adopting a flood risk management hierarchy of assessing, avoiding, substituting, controlling and mitigating flood risk through the land use planning system. They should have regard to flooding from all sources (particularly surface water and not just from rivers and the sea). Government does however; recognise that in some circumstances, appropriate mitigation measures may still involve new, or improving and maintaining existing flood defences where justified, to protect increasingly vulnerable communities.

Current key policy related documents provide LPAs with important and valuable knowledge on the strategic direction of flood risk management and assist their strategic land use planning decision making for re-generation, inward investment and growth etc.

Key documents currently influencing FRM policy are:

- EU Floods Directive EU (2007)
- Draft Floods and Water Management Bill Defra (2009)
- Future Water Defra (2008)
- Improving Surface Water Drainage Defra (2008)
- Making Space for Water Defra (2005)

- Planning Policy 25: Development & Flood Risk CLG (2006)
- Planning Policy 25: Development & Flood Risk Practice Guide –CLG (2009)
- Learning Lessons from the 2007 Floods Sir Michael Pitt (2008)
- Catchment Flood Management Plans currently being implemented
- Shoreline Management Plans currently being revised

EU Floods Directive

The "EU Floods Directive" aims to reduce and manage the risk floods pose to human health, the environment, cultural heritage and economic activity. Member States have two years in which to transpose its provisions into domestic legislation and the first requirements of the Directive begin at the end of 2011.

England and Wales have recently implemented the Flood Risk Regulations (2009) which came into force on the 10th December 2009, transposing the Directive into law. These regulations outline the requirement for the Environment Agency and Lead Local Flood Authorities to create Preliminary Flood Risk Assessments (PFRAs). PFRAs must be completed by the Environment Agency for flooding from main rivers, the sea, and reservoirs. Lead Local Flood Authorities must complete PFRAs for local flood risk - i.e. other sources apart from rivers, the sea and reservoirs (therefore focusing on ordinary watercourses, surface water and groundwater flooding). The aims of these PFRAs are to identify significant flood risk areas.

For these significant flood risk areas flood hazard and flood risk maps must be created by the Environment Agency or Lead Local Flood Authority (dependent on the source of risk as above). Flood Risk Management Plans (FRMP) will also need to be created for each flood risk area identified. These FRMP must include:

• Objectives for the purpose of managing flood risk:

With the aim of reducing the adverse consequences of flooding to human health, economic activity and the environment, and

Reducing the likelihood of flooding.

• The proposed measures for achieving those objectives

The timetable for which these assessments or plans should be carried out is outlined below:

Assessment or Plan	Organisation to carry out study	Deadline	1st Review
River Basin PFRA	Environment Agency	22nd Dec 2011	22nd Dec 2017
Local Authority PFRA	Lead Local Flood Authorities	22nd Dec 2011	22nd June 2017
River Basin Flood Hazard and Risk Maps	Environment Agency	22nd Dec 2013	22nd Dec 2019
Local Authority Flood Hazard and Risk Maps	Lead Local Flood Authorities	22nd Dec 2013	22nd June 2019
River Basin FRMP	Environment Agency	22nd Dec 2015	22nd Dec 2021
Local Authority FRMP	Lead Local Flood Authorities	22nd Dec 2015	22nd June 2021

It is expected that PFRAs will be required by March 2011. Therefore work on PFRAs by Lead Local Flood Authorities needs to begin in March 2010 at the latest which allows one year for PRFAs to be compiled and submitted to the Environment Agency for review. This will then allow time for review, changes and the consolidation of reports from Local Authorities and the Environment Agency in time for the December deadline.

The Government proposes to use existing flood risk planning outputs of RFRAs and SFRAs to deliver the requirements of PFRAs. It is also proposed that local authorities extend their Level 2 SFRAs to look at the impact of flooding on the environment and

onsulting

be FRMPs under the Directive, and will also be a tool more generally for local flood risk management. This integrated approach will underpin the planning system and guide the location of future development to avoid and minimise flood risk, whilst also meeting the requirements of the Floods Directive. Local authorities, through their land use planning activities, have a key role to play.

Draft Flood & Water Management Bill

The "Draft Flood and Water Management Bill" proposes new unifying legislation covering all forms of flooding and shifting the emphasis from building defences to managing risk. It aims to:

- Reduce the likelihood and impacts of flooding
- Improve the ability to manage the risk of flooding, by clarifying who is responsible for what
- Reduce pollution and improve water quality
- Give water companies better powers to conserve water during drought
- Reduce red tape and other burdens on water and sewerage companies
- Improve the overall efficiency of the industry

A number of proposals in the draft Bill have particular implications for local authorities, land use planning and related flood risk. These include:

- The Environment Agency will be given a strategic overview role covering all forms of flooding and will coordinate maps and plans in relation to the sea, main rivers and reservoirs; it will also be given the same powers as councils to carry out coastal erosion works and may be a statutory consultee in respect of future coastal erosion planning applications
- Local authorities will have an enhanced leadership role in local flood risk management which includes ensuring that flood risk from all sources, including from surface run-off, groundwater and ordinary watercourses, is identified, taken account of in the spatial planning process and managed as part of locally agreed work programmes
- Local authorities will develop a suite of measures for managing local flood risk, for example, surface water mapping, appropriate development planning and collating information on flood risk and drainage assets
- County and unitary authorities will be responsible for local flood risk assessment as Lead Local Flood Authorities and lead in ensuring the production of SFRAs and SWMPs
- SWMPs will have a stronger role in coordinating development and investment planning
- County and unitary authorities will lead new local partnerships and have responsibility for adopting and maintaining sustainable drainage systems (SUDS) in new development, where they affect more than one property
- The automatic right to connect surface water drains and sewers to the public sewerage system will be ended and developers will be required to put SUDS in place in new developments wherever practicable
- Surface water connection to public sewers will be conditional on meeting new national standards for SUDS, and the approval of a SUDS approving body will be needed, and a certificate issued, before development can begin
- Increased emphasis is needed on enabling flood water to safely flow overland with green infrastructure and safe flow routes being identified as part of flood risk assessments
- County or unitary authorities, the Environment Agency and IDBs will have powers to formally designate natural and man-made features (similar in principle to the Listed Buildings classification), which help to manage flood or coastal risk; they

will give formal consent before anyone can change or remove the feature and use enforcement powers where needed

• All relevant authorities will be required to co-operate and share information

The content and implications of the draft Bill provide considerable opportunities for improved and integrated land use planning and flood risk management by local authorities and other key partners. The integration and synergy of strategies and plans at national, regional and local scales, is increasingly important to protect vulnerable communities and deliver sustainable re-generation and growth.

The content and implications of the draft Bill provide considerable opportunities for improved and integrated land use planning and flood risk management by local authorities and other key partners. The integration and synergy of strategies and plans at national, regional and local scales, is increasingly important to protect vulnerable communities and deliver sustainable re-generation and growth.

Improving Surface Water Drainage

The "Improving Surface Water Drainage" consultation document was produced in support of the Government's water strategy and in line with Sir Michael Pitt's initial conclusions. Many of the proposals identified have been carried forward into the new draft Flood and Water Management Bill. The consultation considers policy measures to improve the way surface water runoff is managed. In particular, it proposes:

- 1. Using SWMPs as a tool to improve co-ordination between stakeholders involved in drainage and local management of flood risk
- 2. Increasing uptake of SUDS by clarifying responsibilities for adoption and management
- 3. Reviewing the ability for premises to connect surface water drainage automatically into the public sewer system

Current roles and responsibilities were considered along with various options for improving the current surface water drainage situation. In particular the document recognises that SFRAs and SWMPs already form part of the PPS25 planning framework and there is an aim to enhance their role and make stronger links between surface water drainage and strategic planning.

Making Space for Water Strategy

The "Making Space for Water Strategy" is a milestone document that confirms the Government's strategic direction for Flood and Coastal Erosion Risk Management (FCERM). Over the 20-year lifetime of the new strategy, Government will implement a more holistic approach to managing flood and coastal erosion risks in England. The approach will involve taking account of all sources of flooding, embedding flood and coastal risk management across a range of Government policies, and reflecting other relevant Government policies in the policies and operations of operating authorities for flood and coastal erosion risk management.

The 2004 consultation document "Making Space for Water" sets out the following vision:

"...we want to make space for water so that we can manage the adverse human and economic consequences of flooding and coastal erosion while achieving environmental and social benefits in line with wider government objectives."

In other words, the aim of the strategy is to balance the three pillars of sustainability, managing flood risk and ensuring that the social and economic benefits which accrue from growth and development are attained. This balanced approach, integrating sustainable development with responsible risk management, has underpinned this SFRA.

Section 7 of the consultation document deals with measures to reduce flood risk through land-use planning, which emphasises the Government's commitment to ensuring that the planning system aims to reduce flood risk wherever possible and, in any event, should not add to it. However, it is acknowledged that 10% of England is already within mapped areas of flood risk and that contained within these areas are some of the Brownfield sites

which other areas of Government policy has identified as a priority for future housing provision. The document asserts that over the past five years, 11% of new houses were built in flood-risk areas. The document identifies three sets of measures which may be undertaken to manage flood risk when development is sited in such areas:

- Protection measures to provide, at minimum, the standards of protection specified in PPS25
- Provision of features such as sacrificial areas and compartmentalisation to reduce the consequences of a flood event should one occur (such as functional floodplain)
- Use of construction techniques that increase the flood resistance and resilience of buildings

The document proposes that RSSs and LDFs should take full account of flood risk and incorporate the sequential approach in PPS25. Moreover, the document encourages integration with other planning systems, in particular Catchment Flood Management Plans. Use of European Union (EU) funding streams, such as Interreg IIIB is recommended where applicable, to enable Local Authorities to undertake projects aimed at advancing knowledge and good practice in flood risk management.

Making Space for Water: Programme of Work

The "Making Space for Water: Programme of Work" was developed following consultation and takes account of any relevant recommendations that emerged from the Pitt Review into the 2007 floods that affected many parts of England.

One of Defra's and CLG's early outputs from the Making Space for Water Programme was the publication of PPS25 in December 2006. This work, together with the Practice Guide forms the Governments required approach to managing and reducing flood risk through the land use planning system.

A valuable piece of work looking at "Developing a Broader Portfolio of Options to Deliver Flooding and Coastal Solutions" has been carried out as part of this programme and is very useful to local authorities and other operating authorities, in their strategic planning of flood risk management. Outputs from this work are available from Defra.

Quarterly update reports are released providing details of progress made and key achievements. These reports can be access via the Making Space for Water website at

http://www.defra.gov.uk/environ/fcd/policy/strategy.htm

The Pitt Review

The "Pitt Review" was carried out following the severe floods of summer 2007 and is a key document for local authorities in their consideration of flood risk management. Sir Michael Pitt was asked by Ministers to conduct an independent review of events and report on the lessons that should be learned. The Review collected evidence by visiting affected areas and examining over 600 written statements submitted by victims of the floods.

The final report was released in June 2008 and contains detailed findings, conclusions and 92 recommendations for action, covering all aspects of strategic and local flood risk management. These interim conclusions are intended to shape the National approach to flood management and can be accessed via the Defra website. Some of the recommendations which are relevant to this SFRA include;

- Recommendation 11 Building Regulations should be revised to ensure that all new or refurbished development in high flood risk areas are flood resistant or resilient.
- **Recommendation 14** Local Authorities should lead on the management of local flood risk, with support of the relevant organisations.
- Recommendation 17 All relevant organisations should have a duty to share information and cooperate with local authorities and the Environment Agency to facilitate the management of flood risk.

- Recommendation 18 Local Surface Water Management Plans, as set out under PPS25 and coordinated by local authorities, should provide the basis for managing all local flood risk.
- **Recommendation 52** In the short term, the Government and infrastructure operators should work together to build a level of resilience in critical infrastructure assets that ensures continuity during worst case flood event.
- **Recommendation 57** The Government should provide Local Resilience Forums with the inundation maps for both large and small reservoirs to enable them to assess risks and plan for contingency, warning and evacuation.

Pitt's findings, conclusions and recommendations for action are challenging but will be extremely important in guiding local authorities and other operating authorities in their consideration of future flood risk management activities, including land use planning. They have also been a key driver in shaping the content of the draft Flood and Water Management Bill.

C.3 National Planning Policy

This SFRA has been prepared in a period during which planning authorities have been implementing the provisions of the Planning and Compulsory Purchase Act 2004 and accompanying planning guidance, including PPS1 Delivering Sustainable Development and PPS12 Local Development Frameworks. This affected all tiers of the planning system and has necessitated major changes at both the regional and local level which will impact on the way in which planned development is approached in the regional strategy and delivered locally.

PPS25 Development and Flood Risk

In December 2006 the Government published PPS25: Development and Flood Risk.

The aim of PPS25 is to ensure that flood risk is taken into account at all stages in the planning process to avoid inappropriate development in areas at risk of flooding and to direct development away from areas at highest risk. The key planning objectives are that *"Regional Planning Bodies (RPBs) and Local Planning Authorities (LPAs) should prepare and implement planning strategies that help to deliver*

sustainable development by:

- Identifying land at risk and the degree of risk of flooding from river, sea and other sources in their areas;
- Preparing Regional or Strategic Flood Risk Assessments (RFRAs / SFRAs) as appropriate, as a freestanding assessment that contributes to the Sustainability Appraisal of their plans;
- Framing policies for the location of development which avoid flood risk to people and property where possible, and manage any residual risk, taking account of the impacts of climate change;
- Only permitting development in areas of flood risk when there are no suitable alternative sites in areas of lower flood risk and the benefits of the development outweigh the risks from flooding;

- Safeguarding land from development that is required for current and future flood management e.g. conveyance and storage of flood water, and flood defences;
- Reducing flood risk to and from new development through location, layout and design, incorporating sustainable drainage systems (SUDS);

- Using opportunities offered by new development to reduce the cause and impacts of flooding e.g. SWMPs; making the most of the benefits of green infrastructure for flood storage, conveyance and SUDS; re-creating functional floodplain; and setting back defences;
- Working effectively with the Environment Agency, other operating authorities and other stakeholders to ensure that best use is made of their expertise and information so that plans are effective and decisions on planning applications can be delivered expeditiously; and
- Ensuring spatial planning supports flood risk management policies and plans, River Basin Management Plans and emergency planning."

In addition to setting out the roles and responsibilities for LPAs and RPBs, PPS25 identifies that landowners also have a primary responsibility for safeguarding their land and other property against natural hazards such as flooding. Those promoting sites for development are also responsible for:

- Demonstrating that is consistent with PPS25 and Local Development Documents (LDDs)
- Providing a Flood Risk Assessment (FRA) demonstrating whether the proposed development: is likely to be affected by current or future flooding; satisfies the LPA that the development is safe; and identifies management and mitigation measures

PPS25 also introduces an amendment to Article 10 of The Town and Country Planning (General Development Order) 1995 which makes the Environment Agency a Statutory Consultee on all applications for development in flood risk areas and those within 20m of a Main River.

The Direction also introduces the requirement for LPAs to notify the Secretary of State where they are minded to approve a planning application contrary to a sustained objection by the Environment Agency.

The introduction of PPS25 enables local authorities to make a direction under Article 4 of the Town and County Planning (General Permitted Development) Order 1995. This will enable Local Authorities to remove permitted development rights where those rights threaten to have a direct, significant and adverse effect on a flood risk area, or its flood defences and their access, or the permeability and management of surface water, or flood risk to occupants.

Proposed Updates to PPS25

On 11 August 2009, CLG published a Consultation Paper on proposed amendments to PPS25. The consultation relates to proposed clarifications to some aspects of the existing national spatial planning policy on development and flood risk, to help ensure the policy is applied effectively. The consultation process ended in November 2009.

The proposed amendments affect tables D.1 (Flood Zones) and D.2 (Flood Risk Vulnerability Classification) in Annex D of PPS25.

It is proposed that the definition of the functional floodplain is updated to:

"..The identification of functional floodplain should take account of local circumstances and not be defined solely on rigid probability parameters. But land which would flood with an annual probability of 1 in 20 (5%) or greater in any year, or is designed to flood in an extreme (0.1%) flood, should provide a starting point for consideration and discussions to identify the functional floodplain"

The reasoning behind this was that by simply stating it should be based on probability rather than local circumstance, leads to areas of land that are not intended to allow for floodwater to flow or be stored being inappropriately identified as functional floodplain, and potentially also for areas that are designed to flood being wrongly excluded from identified functional floodplain.

There are four amendments proposed in Table D.2 including:

- Moving water treatment and sewage treatment works from 'less vulnerable' to 'essential infrastructure'. This means they will now need to pass the Exception Test if planned in Flood Zone 3a rather than just Flood Zone 3b. As usual, they will have to be designed to the appropriate uses and policy aims within Table D.1
- 2. Allowing police, ambulance and fire stations to be defined as 'less vulnerable' only if they are not required to be operational during flooding. This will stop the exclusion of new emergency services facilities from communities they service in high flood risk areas.
- 3. To allow facilities requiring hazardous substances consent, which are required to be located in flood risk areas, due to their need to be co-located with other facilities (i.e. the need to be located near ports, or processed or manufactured facilities) to be defined as 'essential infrastructure' rather than 'highly vulnerable'.
- 4. Adding wind turbines to the 'essential infrastructure' category. However, in keeping with PPS25, the Sequential Test is not required but Parts A) and C) of the Exception Test would need to be passed if located in Flood Zone 3a and 3b.

Until the proposed changes have been agreed and PPS25 updated, the current PPS25 (2006) and its Practice Guide (2008) should be used for planning policy guidance, but users should be aware of possible future changes.

PPS25 Development and Flood Risk Practice Guide

The Practice Guide to PPS25 was initially published by the Department for Communities and Local Government (CLG) in June 2008. It provides advice on the practical implementation of PPS25 policy and reflects extensive discussion with local authorities, the Environment Agency and other key stakeholders and practitioners. The guide provides further guidance on the preparation of SFRA's and FRAs, the Sequential and Exception Test and outlines potential mitigation measures e.g. SUDS and risk management techniques.

Local Authority planners and developers are advised to refer to and use PPS25 and the practice guide in conjunction with the further advice contained within this report.

December 2009 PPS25 Practice Guide Update

In December 2009, CLG published an update to the PPS25 Practice Guide which replaces the version published in June 2008. It reflects the intention announced at the time of publication to keep the guide fresh and relevant through periodic updates.

The majority of the updates are relatively minor acknowledging material such as the Pitt Review and new flood risk information such as the Environment Agency national Areas Susceptible to Surface Water Flooding map.

Page v of the Practice Guide draws out some of the more substantial changes from the June 2008 version of the guide. Some of the key ones relevant to this SFRA are highlighted below.

- "Additional advice on applying the sequential approach at the regional level over a longer time frame"
- *"Further advice on the issues relating to guidance provided within SFRAs, including on the role of surface water management plans"*
- "Updated guidance on climate change impacts"
- "Updated guidance on applying the sequential approach to other sources of flooding"
- "Further advice on the application of the Sequential Test, including on the availability of alternative sites"
- *"Further clarification on defining functional floodplains*¹⁸"

¹⁸ Communities and Local Government (2009) PPS25: Practice Guide

As mentioned above consultation on proposed amendments to PPS25 are expected in an updated PPS25 in spring 2010 and will be reflected in further iterations of the Practice Guide.

Other Planning Policy Statements

PPS1 Delivering Sustainable Development published in February 2005 sets out the overarching planning policies for the delivery of sustainable development across the planning system and sets the tone for other planning policy statements. PPS1 explicitly states that development plan policies should take account of flooding, including flood risk. It proposes that new development in areas at risk from flooding should be avoided. Planning authorities are also advised to ensure that developments are "sustainable, durable and adaptable" including taking into account natural hazards such as flooding.

PPS1 also places an emphasis on 'spatial planning' in contrast to the more rigid 'land use planning' approach which it supersedes. Planning authorities will still produce site specific allocations and a proposals map as LDDs, but their Core Strategy will be more strategic and visionary in content and will take into account the desirability of achieving integrated and mixed use development and will consider a broader range of community needs than in the past. With regard to flood risk, it will be important for the Core Strategies and accompanying Supplementary Planning Documents to recognise the contribution that non-structural measures can make to flood management.

Planning Policy Statement: Planning and Climate Change, a supplement to PPS1, published in December 2007, sets out how the Government expects the planning system to address climate change. It explains that there is a compelling scientific consensus that human activity is changing the world's climate. The evidence that climate change is happening, and that man-made emissions are its main cause, is strong. The Intergovernmental Panel on Climate Change highlights that we are already experiencing the effects of climate change and if these changes deepen and intensify, as they are predicted to do without the right responses locally and globally, we will see even more extreme impacts.

One of the predicted impacts of climate change is more intense periods of rainfall and consequent flooding. The PPS1 supplement requires Regional Spatial Strategies and Local Development Frameworks to shape sustainable communities that are resilient to such effects. A key objective of the planning system is securing new development and shaping places that minimise vulnerability and provide resilience to climate change in ways that are consistent with social cohesion and inclusion. Accordingly new development should be planned to minimise future vulnerability in a changing climate. The SFRA incorporates Sequential and Exception Test information that is essential in meeting the objectives of the PPS1 supplement Planning and Climate Change.

Planning Policy 12 (PPS12) Local Spatial Planning advocates the importance of considering flooding when local authorities are preparing their development documents. The SFRA provides the evidence on flood risk to feed in the application of LDF and adopted proposals maps.

Whilst not directly relevant to the development of an SFRA, it is important to recognise that the exercise takes place within the context of other planning policy guidance and statements, some of which also require sequential testing of site allocations and development proposals. PPS3 (Housing), emerging PPS4 (Planning for Sustainable Economic Development) and PPS6 (Planning for Town Centres) are intrinsic within the planning process and, therefore, an understanding of the constraints faced as a result of this additional policy guidance is required.

C.4 Regional Policy Drivers

Regional Spatial Strategy

The Regional Planning Guidance for the North West (RPG13) was published in March 2003. In September 2004, following the implementation of the Planning and Compulsory

Purchase Act 2004, the Regional Planning Guidance was converted to the Regional Spatial Strategy (RSS) in line with Governmental reforms.

Regional Planning Bodies have the main responsibility for preparing Regional Spatial Strategies (RSS). In the North West this is the North West Regional Assembly (NWRA). NWRA launched a Full Review in July 2004 and, following informal consultations at issues, options, and Interim Draft stages, submitted the Draft RSS to the Secretary of State on 30th January 2006. The Draft Submitted RSS for North West England (also known as 'The North West Plan') was published for public consultation on 20 March 2006.

The final RSS was published in September 2008 and now outlines the current adopted planning strategy for the period to 2021.

The RSS sets out housing targets for each local

authority under policy L4, which are shown in Table C1. The housing provision targets take account of RSS and Regional Housing Strategy objectives, regional development framework and sub regional policies within the RSS and various strategic priorities and functional linkages.

Local Authority	Housing target to 2021	Annual housing provision	Target for development on previously developed land
Oldham	5,200	289	80%

AGMA has been identified as a national growth point, which will enable the delivery of additional housing up to 2017. This will initially focus on Manchester, Salford, Trafford and Bolton, but may also increase housing targets in Oldham.

The published RSS, when compared to the previous, demonstrates an increased emphasis and heightened awareness of flood risk. Under the emerging RSS Policy EM 5, 'Integrated Water Management' states:

"In achieving integrated water management and delivery of the EU Water Framework Directive, plans and strategies should have regard to River Basin Management Plans, Water Company Asset Management Plans, Catchment Flood Management Plans, and the Regional Flood Risk Appraisal. Local planning authorities and developers should protect the quantity and quality of surface, ground and coastal waters, and manage flood risk, by:

- Working with the Water Companies and the Environment Agency when planning the location and phasing of development. Development should be located where there is spare capacity in the existing water supply and waste water treatment, sewer and strategic surface water mains capacity, insofar as this would be consistent with other planning objectives. Where this is not possible development must be phased so that new infrastructure capacity can be provided without environmental harm;
- Producing sub-regional or district level strategic flood risk assessments, guided by the Regional Flood Risk Appraisal. Allocations of land for development should comply with the sequential test in PPS25. Departures from this should only be proposed in exceptional cases where suitable land at lower risk of flooding is not available and the benefits of development outweigh the risks from flooding;

- Designing appropriate mitigation measures into the scheme, for any development which, exceptionally, must take place in current or future flood risk areas, to ensure it is protected to appropriate standards, provides suitable emergency access under flood conditions, and does not increase the risk of flooding elsewhere;
- Requiring new development, including residential, commercial and transport development, to incorporate sustainable drainage systems and water conservation and efficiency measures to the highest contemporary standard;
- Encouraging retrofitting of sustainable drainage systems and water efficiency within existing developments;
- Raising people's awareness of flood risks (particularly for vulnerable groups) and the impacts of their behaviour and lifestyles on water consumption.¹⁹"

North West River Basin Management Plan

In accordance with the Water Framework Directive (WFD), implemented in December 2000, a River Basin Management Plan (RBMP) must be produced for each of the 11 River Basin Districts by 2009. The Environment Agency state that:

"RBMPs will have a number of functions, but are primarily intended:

To establish a strategic plan for the long term management of the River Basin District.

To set out objectives for waterbodies and in broad terms what measures are planned to meet these objectives

Act as the main reporting mechanism to the European Commission"

A draft RBMP for the North West was prepared in December 2008 and was out for consultation until June 2009.

According to the draft plan it "focuses on achieving the protection, improvement and sustainable use of the water environment - surface freshwaters (including lakes, streams and rivers), groundwater, and ecosystems such as some wetlands that depend on groundwater, estuaries and coastal waters out to one nautical mile."

The main actions proposed in Annex C relevant to this SFRA include:

"A commitment to deliver Catchment Flood Management Plans (CFMPs) to identify and agree policies for sustainable flood risk management for the next 100 years. By employing sympathetic flood risk management, such as that done at Long Preston Deeps in the Ribble catchment, opportunities to enhance sites either designated for their conservation status or to help restore more natural flows to river systems can be created.

Working closely with partners to deliver Shoreline Management Plans (SMPs) to manage the current and future flood risk to the North West coast lines.

Our inputs to the Regional Spatial Strategy and the Local Development Framework will ensure that Water Cycle strategies are incorporated in major planning initiatives. We shall continue to influence planners and developers to incorporate sustainable water use in construction/maintenance projects and also follow the Code for Sustainable Homes.

More use of sustainable drainage systems in new developments.

Regional Spatial Strategy and Local Development Frameworks should include policies that address the potential impacts of proposed levels of development to water resources,

¹⁹ Communities and Local Governments (2008) The North West England Plan Regional Spatial Strategy to 2021

water quality, biodiversity, river restoration, green infrastructure, contaminated land and managing surface water and flood risk.²⁰"

Climate Change Action Plan for the North West

In 2006, the North West Development Agency (NWDA) launched the regions Climate Change Action Plan "Rising to the challenge: A Climate Change Action Plan for England's North West".

The Action Plan sets out the North West's vision and outlines the associated outcomes to be achieved by 2020. In order to achieve these outcomes, the plan recognises that it must focus on twin objectives of reducing regional greenhouse gas emissions and more importantly to this SFRA, adapting to those effects of climate change that are now unavoidable. One of the unavoidable effects of climate change is its impact on flood risk.

Flood risk related climate change issues are extremely important to the future management of

flood risk in the UK and beyond. These issues need to be taken seriously and mitigation and adaptation measures planned and adopted by Regional and Local Authorities.

Principle adverse flood risk effects of climate change threatening people and property include:

- More frequent and intense rainfall events causing flash flooding to low lying areas
- More and faster surface water runoff and overland flows causing sewers, drains, rivers and streams to overflow
- Increased sea level rise, storminess and frequency of storm surges threatening low lying coastal communities
- Rising groundwater levels causing increased spring source activity and higher spring flows, increasing the risk of flooding

If not addressed, these effects are likely to have a significant impact on many communities and in particular new developments in areas at high risk of flooding. Recent climate change trends are contained within a UK Climate Impacts Programme document: "The Climate of the United Kingdom and Recent Trends", which was published in December 2007. The next UKCP09 report, that includes revised climate change predictions, was launched in late 2009.

In recognition of the Governments' increasing concerns about the effects of climate change on flood risk management, Defra produced a "Supplementary Note to Operating Authorities – Climate Change Impacts" in October 2006 in which they updated the climate change policy for flood and coastal management. This document is available on the Defra website. In conjunction with Defra, CLG then provided the recommended climate change contingency allowances for sea level rise and precautionary sensitivity ranges for peak rainfall intensities and peak river flows etc. in Annex B of PPS25. These figures should be used in all aspects of flood risk management including the consideration of new developments and changes of land use in flood risk areas.

RFRA – 4 North West

The North West Regional Flood Risk Appraisal was prepared in October 2008 for 4NW, which is the Regional Planning Body in the North West.

The primary objective of a Regional Flood Risk Appraisal (RFRA) is to provide an appraisal of strategically significant flood risk issues in a region in order to guide strategic planning decisions.

²⁰ Environment Agency (2008) A Consultation on the Draft River Basin Management Plan North West River Basin District

The RFRA assists decisions on key land use factors such as the need for employment, inward investment, regeneration, provision of housing and open/green space, major road and other infrastructure development provision to deliver sustainable growth whilst taking full account of flood risks, now and in the future. The appraisal should also drive and inform policy development and setting in the Regional Spatial Strategy (RSS) for the strategic management of flood risk, and in turn assists local authority planners in their consideration and implementation of land use policies in Local Development Frameworks (LDFs) and Local Development Documents (LDDs). In addition, it provides important strategic flood risk input to the Regional Sustainability Appraisal (RSA) and the Strategic Environmental Assessment (SEA).

The timing of the revised guidance in PPS25 prevented the consideration of a RFRA within the sustainability appraisal for the draft and subsequent RSS. It is envisaged that the information in the RFRA, alongside knowledge from SFRAs and Catchment Flood Management Plans will provide a useful input to future rounds of the sustainability appraisal for the RSS.

The outputs of the RFRA help to identify where there may be a need for further flood risk assessment work to be undertaken, particularly in respect of Strategic Flood Risk Assessments (SFRAs) and where strategically significant developments are proposed in areas currently at risk of flooding. Even where SFRAs already exist, the RFRA helps to place specific local authority flood risks into a regional context, showing the variation of risk and the interdependency between neighbouring authorities and river sub-catchments. Flooding does not respect local authority administrative boundaries and the RFRA provides a mechanism to help local authorities work better together, and with key stakeholders, to consider, communicate and share common or similar flood risk management policy objectives, opportunities and constraints.

The RFRA assessed significant flood risk by:

- Undertaking a survey of local authorities to gauge their broad assessment of flood risk issues
- Reporting on the work undertaken by the Environment Agency to evaluate the potential impact of fluvial and coastal flooding in relation to the proposed housing figures set out in the draft RSS
- Assessing any potential flood risk implications related to regionally significant economic development
- Considering other sources of flooding, such as sewers and groundwater
- Considering the potential impacts of climate change

In a ranking of fluvial and tidal flood risk, that takes into account flood risk and development pressures, out of a maximum of 15 points, Oldham scored 4. This lower position indicates that development could take place outside of the highest risk areas, but an SFRA is required for all local authorities, regardless of ranking, to further define the risks from all sources of flooding

AGMA SFRA

The Greater Manchester sub-regional SFRA was published in August 2008 on behalf of the Association of Greater Manchester Authorities (AGMA). The main objective of the SFRA was to *"bring together existing information and identify where further, more detailed assessments are required."*

The SFRA looks into flood risk issues across the

AGMA area and considers linkages in the river systems between different local authority boundaries. It provides recommendations for further work in local authority SFRAs,

including filling in data gaps, such as surface water flooding. The SFRA is discussed in more detail in Section B.1.

C.5 Local Planning Policy

Following the introduction of the Planning and Compulsory Purchase Act 2004, the way in which development plans are prepared is changing. With the aim of speeding up and simplifying plan preparation and improving community involvement, development plans in their current form are to be abolished and replaced with a new development plan system, the Local Development Framework (LDF).

The Emerging Local Development Framework

The UDP is currently in the process of being replaced by the Local Development Framework (LDF). The LDF will take the form of a portfolio of plans and documents made up of several Local Development Documents (LDDs). Some of them will have statutory status (Development Plan Documents, DPDs) and others will be adopted as local guidance documents. LDDs can either deal with different issues or different geographical areas, but when taken together they will set out the Council's policies for how it will assess development proposals and direct future growth.

The Local Development Framework is currently being prepared. Oldham Council is continuing to work on their Core Strategy following consultation on the preferred option.

C.6 Environment Agency Policy

Catchment Flood Management Plans

The SFRA area is covered by three CFMPs; The River Irwell CFMP and the Upper Mersey CFMP.

CFMPs investigate what factors influence flood risk at the catchment scale and will assess the impacts that climate change, land use change and urbanisation may have on flood risk over the next 50 to 100 years.

The CFMP will establish a policy framework for flood risk management across the catchment through which future flood defence management strategies and programmes will be formulated. Recognition of these strategic plans is very important to local authority planners when planning for the future and considering long term land use options for re-generation, inward investment and growth.

The CFMPs help to prioritise activities, focus resources where there is greatest need and determine what flood risk management responses need to be considered further (and which responses will not be effective). The responses to flood risk will be broader than those traditionally used for flood defence to reflect the full range of management options available. CFMPs support an integrated approach to spatial planning and river basin management, in line with the Water Framework Directive and the EU Directive on the assessment and management of flood risk; they cover all geographical areas in England and Wales and are crucial in the planning of sustainable flood risk management.

There are a number of sustainable flood risk management policies relating to the areas within Oldham, which have been identified in the SFRA Volume III Section 2. Defra has assigned a national indicator (NI 189 - Flood and coastal erosion risk management) to record the progress of local authorities in delivering agreed actions to implement long term flood and coastal erosion risk management (FCERM) plans; this includes the actions within CFMPs.

C.7 Summary

In accommodating future development in Oldham there is a range of planning policies to consider and balance on a national, regional and local level. Future development needs have been broadly specified in regional plans and are being refined on a local level in the emerging LDF.

PPS25 and its Practice Guide provides the overarching national guidance with respect to development and flood risk, emphasising the need to effectively manage flood risk within the planning system, rather than relying on reactive solutions to flooding. This includes a responsibility for LPAs to reduce flood risk to people and property as a result of new development. It also identifies the preparation of SFRAs as a key process in the understanding and management of flood risk for planning purposes.

It is widely recognised that flood risk is one of a whole raft of policy constraints placed upon the local planning system. Development must facilitate the socio-economic needs of a community and spatially must sit within an existing framework of landscape and infrastructure. For this reason, a balance must be sought between development need and the risk it may pose upon existing and future dwellers of the area as a result of flooding.

The aim of this SFRA is to provide a better understanding of flood risk in Oldham that can feed into the emerging LDF along side the Greater Manchester Sub-Regional SFRA and North West RFRA and enable informed and balanced planning decisions to be made.

D. Stakeholder Engagement and Data Management

D.1 Introduction

The majority of data provided in both the SFRA Volume II and III has been obtained through consultation with those stakeholders with specific interest in or knowledge of sources of flooding within the study area.

PPS25 outlines a number of key consultees to the planning process. Stakeholders and their involvement within the preparation of the SFRA are discussed in Table D1.

Stakeholder	Involvement
LPA	Oldham Council was the main stakeholder for the preparation of this SFRA. They focused the scope of the SFRA and provided the detail needed for its production.
	An initial SFRA meeting was held to discuss the requirements of PPS25 in producing a Level 1 SFRA and to determine the main tasks that needed to be completed. The meeting also outlined the councils' own timetable relating to preparing an evidence base for their LDF process.
	There have been regular progress meetings outlining progress to date and further data requests. A member of the Environment Agency has always been present to inform the decision making process.
Environment Agency	The Environment Agency is a statutory consultee for RSSs, LDDs, Sustainability Appraisals and Strategic Environmental Assessments. They are also a statutory consultee for planning applications. With regards to the SFRA, the Environment Agency has discretionary powers under the Water Resources Act (1991) to manage flood risk and, as a result, hold the majority of flood risk data in the UK. Separate departments were consulted via the External Relations Team including Development Management, Flood Risk Mapping and Data Management and Reservoir Safety Teams on the SFRA approach and available data.
	The Environment Agency was also one of the main consultees throughout the preparation of the SFRA and their comments and guidance have been included within report revisions.
United Utilities	The main source of information requested from United Utilities was DG5 records, location of drainage areas and sewers networks. United Utilities flood risk data was not made available in the timescales required for inclusion in this project.
	The Council should continue to liaise with United Utilities in conjunction with the Environment Agency and the wider Greater Manchester Authorities to explore how they can contribute to the understanding of flood risk now or in the future.
British Waterways	Flood risk from British Waterways Canals was highlighted in the Greater Manchester sub-regional SFRA as a major source of residual risk as flooding has been known to occur, but information on the risk is relatively unknown.
	An initial meeting was held between British Waterways and a Chartered Engineer from JBA to discuss the risk associated with canals. British Waterways supplied very helpful information including historical flood locations, the location of critical embankments and overflow structures. This information shaped the methodology of assessing flood risk from canals discussed in the Level 1 and Level 2 SFRA.

Table D1: Stakeholder Involvement

D.2 SFRA Data Management

The SFRA should be viewed as a 'living' document for use in the day-to-day process of planning and development. It is therefore important that datasets collected for the SFRA are transparent and accessible. A Data Register has been produced and supplied to the Council listing all data received throughout the SFRA process.

All data was reviewed on receipt and its quality and confidence rated for use in the SFRA. This process was purely based on professional judgement and rated on a high to low scale.

Most data requested was of the quality and accuracy expected. Whilst the majority of the datasets could be mapped geographically using Geographic Information Systems (GIS), helping to visualise the risk of flooding, others were not, reducing the quality score. Historical flooding information was generally marked as both medium quality and confidence, as whilst it could be placed on a map, there was generally information on the source of flooding. The confidence in its precision was also questionable, as expected for historical flood records.

The Data Register will allow intended users of the SFRA to review the accuracy, currency and relevance of all datasets used and for a central group to manage and update datasets when needed. The Data Register also provides details of contacts who supplied the data. The organisations listed should be the first contact for any update to the SFRA to make sure the most up-to-date datasets are used.

D.3 Supplying SFRA Data

Whilst all data collected and produced during the SFRA process has been supplied to the LPA (report, maps, GIS, modelled output, data register) there should be controls on its use. It is anticipated that the SFRA report (all volumes) and associated maps will be published on the Council website as PDFs as the central source of SFRA data and available to download.

The LPA will be able to use the modelled output (depths, hazards and outlines) for internal use. The use of this information must consider the context within which it was produced. The use of this data will fall under the license agreement between the LPA and the Environment Agency as it has been produced using Environment Agency data. It should be remembered that the modelling undertaken for the SFRA is of a strategic nature and more detailed FRAs should seek to refine the understanding of flood risk from all sources to any particular site.

SFRA data should not be passed on to third parties outside of the LPA. Any third party wishing to use existing Environment Agency flood risk datasets should contact External Relations in the Environment Agency North West Region. A charge is likely to apply for the use of this data.

E. Flood Risk Zones

Please note that proposed changes have been made to this table (Table D.1), mainly the definition of the functional floodplain, in the upcoming revision of PPS25. This is expected around spring 2010. See Section C.3 for further information.

Zone 1: Low Probability
Definition
This zone comprises land assessed as having a less than 1 in 1000 annual probability of river and
sea flooding in any year (<0.1%).
Appropriate uses
All uses of land are appropriate in this zone
FRA requirements
For development proposals on sites comprising one hectare or above the vulnerability to flooding
from other sources as well as from river and sea flooding, and the potential to increase flood risk
elsewhere through the addition of hard surfaces and the effect of the new development on surface
water run-off, should be incorporated in an FRA [Flood Risk Assessment]. This need only be brief
unless the factors above or other local considerations require particular attention. See Annex E (of
PPS25) for minimum requirements
Policy aims
In this zone, developers and local authorities should seek opportunities to reduce the overall level of
flood risk in the area and beyond through the layout and form of the development and the
appropriate application of sustainable drainage techniques.
Zone 2: Medium Probability

Definition

This zone comprises land assessed as having between a 1 in 100 and 1 in 1000 annual probability of river flooding (1% - 0.1%) and between a 1 in 200 and 1 in 1000 annual probability of sea flooding (0.5% - 0.1%) in any year.

Appropriate uses

The water-compatible, less vulnerable and more vulnerable uses of land and essential infrastructure listed in... [The Flood Risk Vulnerability Classification, see Table A-2] are appropriate in this zone. Subject to the Sequential Test being applied, the highly vulnerable uses in Table D.2 (of PPS25 and Table B-2 of this report) are only appropriate in this zone if the Exception Test is passed FRA requirements.

All development proposals in this zone should be accompanied by a FRA. See Annex E (of PPS25) for minimum requirements

Policy Aims

In this zone, developers and local authorities should seek opportunities to reduce the overall level of flood risk in the area through the layout and form of the development and the appropriate application of sustainable drainage techniques.

Zone 3a: High Probability

Definition

This zone comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%) and a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.

Appropriate uses

The water-compatible and less vulnerable uses of land listed in Table D.2 (of PPS25 and Table A-2 of this report) are appropriate in this zone.

The highly vulnerable uses listed in Table D.2 (of PPS25 and Table A-2 of this report) should not be permitted in this zone.

The more vulnerable and essential infrastructure listed in the Table D.2 (of PPS25 and Table B-2 of this report) should only be permitted in this zone if the Exception Test is passed. Essential Infrastructure permitted in this zone should be designed and constructed to remain operational and

safe for user in times of flood.

FRA requirements

All development proposals in this zone should be accompanied by a FRA, See Annex E (of PPS25) for minimum requirements.

Policy Aims

In this zone, developers and local authorities should seek opportunities to:

reduce the overall level of flood risk in the area through the layout and form of the development and the appropriate application of sustainable drainage techniques;

relocate existing development to land in lower Flood Zones; and

Create space for flooding to occur by restoring functional floodplain and flood flow pathways and by identifying, allocation and safeguarding open space for flood storage.

Zone 3b: The Functional Floodplain

Definition

This zone comprises land where water has to flow or be stored in times of flood. SFRAs should identify this Flood Zone (land which would flood with an annual probability of 1 in 20 (5%) or greater in any year or is designed to flood in an extreme (0.1%) flood, or at another probability to be agreed between the LPA and the Environment Agency, including water conveyance routes). Appropriate uses

Only the water-compatible uses and the essential infrastructure listed in Table D.2 that has to be there should be permitted in this zone. It should be designate and constructed to:

Remain operational and safe for users in times of flood;

Result in no net loss of floodplain storage;

Not impede water flows; and

Not increase flood risk elsewhere.

Essential infrastructure in this zone should pass the Exception test.

FRA requirements

All development proposed in this zone should be accompanied by a FRA. See Annex E for minimum requirements.

Policy Aims

In this zone, developers and local authorities should seek opportunities to:

Reduce the overall level of flood risk in the area through the layout and form of the development and the appropriate application of sustainable drainage techniques; and

Relocate existing development to land with a lower probability of flooding.

JBA consulting

F. Flood Risk Vulnerability Classification

Flood risk vulnerability classifications are provided in Table D.2 of PPS25. These provide recognition that not all land uses have the same vulnerability to flooding. Some land uses such as residential developments are more vulnerable to the potential loss of life and damage to personal property and possessions than, for example, shops and offices. Five flood risk vulnerability classifications are contained in PPS25 and these are:

- Essential infrastructure
- Highly vulnerable
- More vulnerable
- Less vulnerable
- Water compatible development.

Flood Zone 1 – Low Probability

From a flood risk perspective all land uses are acceptable within Flood Zone 1. Flood risk is not considered to be a significant constraint to development and all land uses listed below are appropriate in this zone.

- Essential infrastructure
- Highly vulnerable
- More vulnerable
- Less vulnerable
- Water compatible development.

A Screening Study, as per PPS25 Practice Guide, will be required for development in this zone – this will determine whether further assessment of flood risk is required. This will take account of historical flood records of localised flooding, site specific considerations and the surface water proposals for the development, including mitigation.

However, due to their potential impact on the local flood risk, a full Flood Risk Assessment will be required for all developments greater than 1ha in size. This will include further consideration of surface water drainage and onsite mitigation measures that may be required, particularly where the capacity of the surface water sewer or receiving watercourse is limited. This assessment will be undertaken by the developer of the site and should be appropriate to the scale, nature and location of the development. The Council's Drainage Engineers and the Environment Agency will be able to advise potential developers as to their specific requirements on a site by site basis.

Flood Zone 2 – Medium Probability

Subject to the application of the Sequential Flood Risk Test, PPS25 specifies suitable types of development in Flood Zone 2 as:

- Essential infrastructure
- More vulnerable
- Less vulnerable
- Water compatible development.

Highly vulnerable uses should only be permitted in this zone if the Exception Test is passed. The SFRA is unable to assess whether the site will pass parts a. and b. of the Exception Test. However, the council must be able to demonstrate the need for development through the spatial planning process.

A Flood Risk Assessment will be required for all development in this zone. The Flood Risk Assessment will need to assess the current level of flood risk as well as the level of flood risk following development. Development plans for the site will need to demonstrate that flood risk can be effectively and safely managed without increasing flood risk elsewhere.

Proposals will also need to demonstrate that access and egress to the development can be maintained during an extreme flood event and that development is set at an appropriate level. A further level of analysis may be required where development is planned behind or adjacent to existing defences in order to test the sustainability and robustness of the mitigation measures. In keeping with Flood Zone 1 other flood risk constraints, such as incidents of localised flooding and other site specific considerations will need to be addressed. Again, detailed FRAs will be undertaken by the developer of the site and the Environment Agency will be able to advise potential developers as to their specific requirements on a site by site basis. The Flood Risk Assessment will need to address part c. of the Exception Test and should only be commenced when the planning justification is clearly established.

Flood Zone 3 – High Probability

A Sequential Flood Risk Test is used to prioritise sites in order of vulnerability to flood risk and their acceptability for development. Developers should primarily focus on lower Flood Zones in preference to Flood Zone 3. Any proposals for development within Flood Zone 3 will require developers to undertake a detailed Flood Risk Assessment. It should be noted that constraints to development are likely to be significant and developers should seek advice from the Councils and the Environment Agency as to the specific requirements for assessment.

Flood Zone 3 is subdivided into Zones 3a and 3b. Flood Zone 3b is the portion of floodplain that provides natural and/or managed attenuation. It can be all or part of the flow area and owing to the frequency of inundation, Zone 3b areas are considered to be Functional Floodplain. Urban areas are generally considered to be Zone 3a, so for the purpose of this SFRA, Brownfield sites will be assumed Zone 3a.

Zone 3a is potentially suitable for water compatible and less vulnerable land uses. The more vulnerable and essential infrastructure uses should only be permitted in this zone if the Exception Test is passed. Highly vulnerable development should not be permitted in this zone.

In Zone 3b, only essential infrastructure (subject to exception testing) and watercompatible uses may be permitted.

Where sites are partially located within Flood Zone 3b, it is recommended that Councils should avoid development by specifying water compatible uses or Public Open Space for these areas.

Land use vulnerability classifications and flood zones are carried forward into Table D.3 for application of the Exception Test.

Proposed Updates to PPS25 Vulnerability Classification

On 11 August 2009, CLG published a Consultation Paper on proposed amendments to PPS25. The consultation relates to proposed clarifications to some aspects of the existing national spatial planning policy on development and flood risk, to help ensure the policy is applied effectively. The consultation process is ended in November 2009.

There are four amendments proposed in Table D.2 including:

- Moving water treatment and sewage treatment works from 'less vulnerable' to 'essential infrastructure'. This means they will now need to pass the Exception Test if planned in Flood Zone 3a rather than just Flood Zone 3b. As usual, they will have to be designed to the appropriate uses and policy aims within Table D.1
- Allowing police, ambulance and fire stations to be defined as 'less vulnerable' only if they are not required to be operational during flooding. This will stop the exclusion of new emergency services facilities from communities they service in high flood risk areas.
- 3. To allow facilities requiring hazardous substances consent, which are required to be located in flood risk areas, due to their need to be co-located with other

facilities (i.e. the need to be located near ports, or processed or manufactured facilities) to be defined as 'essential infrastructure' rather than 'highly vulnerable'

4. Adding wind turbines to the 'essential infrastructure' category. However, in keeping with PPS25, the Sequential Test is not required but Parts A) and C) of the Exception Test would need to be passed if located in Flood Zone 3a and 3b.

Until the proposed changes have been agreed and PPS25 updated, the current PPS25 (2006) and its Practice Guide (2009) should be used for planning policy guidance, but users should be aware of possible future changes.

Classification	Description	
Essential Infrastructure	• Essential transport infrastructure (including mass evacuation routes) which has to cross the area at risk and strategic utility infrastructure, including electricity generating power stations and grid and primary substations.	
Highly Vulnerable	 Police stations, Ambulance stations and Fire stations and Command Centres and telecommunications installations required to be operational during flooding. Emergency dispersal points. Basement dwellings. Caravans, mobile homes and park homes intended for permanent residential use. Installations requiring hazardous substances consent (1) 	
More Vulnerable	 Hospitals. Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels. Buildings used for: dwelling houses; student halls of residence; drinking establishments; nightclubs; and hotels. Non-residential uses for health services, nurseries and educational establishments. Landfill and sites used for waste management facilities for hazardous waste. (2) Sites used for holiday or short-let caravans and camping, subject to a specific warming and evacuation plan 	
Less Vulnerable	 Buildings used for: shops; financial, professional and other services; restaurants and cafes; hot food takeaways; offices; general industry; storage and distribution; non-residential institutions not included in 'more vulnerable'; and assembly and leisure. Land and buildings used for agriculture and forestry. Waste treatment (except landfill and hazardous waste facilities). Minerals working and processing (except for sand and gravel working). Water treatment plants. Sewage treatment plants (if adequate pollution control measures are in place). 	
Water-compatible Development	 Flood control infrastructure. Water transmission infrastructure and pumping stations. Sewage transmission infrastructure and pumping stations. Sand and gravel workings. Docks, marinas and wharves. Navigation facilities. MOD defence installations. Ship building, repairing and dismantling, dockside fish processing and refrigeration and compatible activities requiring a waterside location. Water-based recreation (excluding sleeping accommodation). Lifeguard and coastguard stations. Amenity open space, nature conservation and biodiversity, outdoor sports and recreation and essential facilities such as changing rooms. Essential ancillary sleeping or residential accommodation for staff required by uses in this category, subject to a specific warning and evacuation plan. 	
Note 1: This classification is based on advice from the Environment Agency on the flood risks to people and the need of some uses to keep functioning during flooding. Note 2: Buildings that combine a mixture of uses should be placed into the higher of the relevant classes of flood risk sensitivity. Developments that allow uses to be distributed over the site may fall within several classes of flood sensitivity.		

classes of flood sensitivity.
(1)DETA Circular 04/00 – para. 18: Planning controls for hazardous substances.
(2)See Planning for Sustainable Waste Management: Companion Guide to Planning Policy Statement 10 for definition.

G. Sustainable Drainage Systems

G.1 Assessment of the Application of SUDS

Sustainable Drainage Systems (SUDS) are management practices which enable surface water to be drained in a more sustainable manner.

For Greenfield developments, the aim is to not increase runoff from the undeveloped situation; for Brownfield re-developments, the aim is to reduce existing runoff rates. Wherever possible, this should be achieved through the implementation of a sustainable drainage or flow retention system, constructed within the boundaries of the development site.

There are many different SUDS techniques which can be implemented. As a result, there is no one correct drainage solution for a site. In most cases, a combination of techniques, using the Management Train principle, will be required. Figure G1 shows the SUDS Management Train principle where source control is the primary aim.

Regarding flood risk, those SUDS with a high/primary process for dealing with water quantity should first be investigated, before other benefits such as water quality and environmental befits are included. SUDS can reduce the amount and rate of runoff by a combination of:

- Infiltration,
- Storage, and
- Conveyance

There are a number of SUDS techniques which could be used individually or as part of a management train, however their suitability relies on the site and catchment descriptors discussed above but also their intended purpose (as shown in Table G1).

²¹ CIRIA (2008) Sustainable Drainage Systems: promoting good practice – a CIRIA initiative

SUDS Technique	Infiltration	Storage	Conveyance
Green Roofs	×	✓	✓
Permeable Paving	✓	×	\checkmark
Rainwater Harvesting	×	\checkmark	×
Swales	✓	\checkmark	✓
Detention Basins	✓	\checkmark	\checkmark
Ponds	×	✓	✓
Wetlands	×	\checkmark	\checkmark
Source: PPS25 Practice Guide			

Table G1: Suitability of SUDS Techniques

PPS25 stresses that Regional Planning Bodies and Local Planning Authorities (LPAs) should:

- Promote the use of SUDS for the management of run-off
- Ensure their policies and decisions on applications support and complement the Building Regulations on sustainable rainwater drainage, giving priority to infiltration over first watercourses then sewers
- Incorporate favourable policies within Regional Spatial Strategies
- adopt policies for incorporating SUDS requirements in Local Development Documents
- Encourage developers to utilise SUDS wherever practicable, if necessary through the use of appropriate planning conditions
- Develop joint strategies with sewerage undertakers and the Environment Agency to further encourage the use of SUDS

The Greater Manchester sub-regional SFRA has produced a SUDS Suitability Map and accompanying report which is an excellent source of information. It should however be used as a very high level piece of information at the beginning of any discussions regarding the use of SUDS within a community. It does not preclude the need for site-specific investigations on the suitability of SUDS within a development site.

H. Mitigation Measures

H.1 Planning considerations and mitigation strategy

Site layout and design

Flood risk should be considered at an early stage in deciding the layout and design of a site to provide an opportunity to reduce flood risk within the development.

The PPS25 Practice Guide states that a sequential, risk-based approach should be applied to try to locate more vulnerable land use to higher ground, while more flood-compatible development (e.g. vehicular parking, recreational space) can be located in higher risk areas.

Waterside areas, or areas along known flow routes, can be used for recreation, amenity and environmental purposes, allowing the preservation of flow routes and flood storage, and at the same time providing valuable social and environmental benefits contributing to other sustainability objectives. Landscaping should ensure safe access to higher ground from these areas, and avoid the creation of isolated islands as water levels rise.

The Environment Agency will have to consent to any works within 5 metres of a main river. It is likely that they will object in principle to any development within these areas.

The Royal Institute of British Architects (RIBA) have produced a guidance document 'Designing for Flood Risk' which can aid this process. The guidance document can be found at:

http://www.architecture.com/FindOutAbout/Sustainabilityandclimatechange/Floodin g/DesignGuide.aspx

Modification of ground levels

Modifying ground levels to raise the land above the required flood level is a very effective way of reducing flood risk to the site in question.

However, in most areas of fluvial flood risk, floodplain volume would be reduced by raising land above the floodplain, often adversely affecting flood risk in the vicinity and downstream. Compensatory flood storage must be provided, and should be on a level for level, volume for volume basis on land that does not currently flood but is adjacent to the floodplain (in order for it to fill and drain). It should be in the vicinity of the site and within the red line of the planning application boundary (unless the site is strategically allocated) and based on a level for level compensation for any loss of floodplain.

Where the site is entirely within the floodplain it is not possible to provide compensatory storage at the maximum flood level and this will not be a viable mitigation option. Compensation schemes must be environmentally sound.

Local flood storage

Where development reduces the volume of floodplain storage it will be necessary to provide compensatory storage locally. This could be an environmental wetland area, designated washland (designed to flood) or a flood basin. This can also be considered within urban design if areas are designated to flood in a flood event (e.g. ground floor of a development with residential on first floor).

On a strategic catchment-wide scale, appropriately located flood storage basins and washlands can not only provide a reduction in flood risk, but can also enhance and contribute to wetland restoration and habitat creation as well as potentially increasing the recreational value of many river corridors. For upstream flood storage schemes to maximise benefits downstream, they need to be located in suitable areas of the catchment. Locating flood storage basins too high in the catchment could mean that a large proportion of a flood event is still able to travel downstream from other areas in the catchment.

Raised defences

Construction of raised floodwalls or embankments to protect new development is not a preferred option, as a residual risk of flooding will remain. Compensatory storage must be provided where raised defences remove storage from the floodplain.

Temporary or demountable defences are not acceptable flood protection for a new development unless flood risk is residual only.

Temporary barriers

Temporary barriers consist of moveable flood defences which can be fitted into doorways and/or windows. The permanent fixings required to install these temporary defences should be discrete and keep architectural impact to a minimum. On a smaller scale temporary snap-on covers for airbricks and air vents can also be fitted to prevent the entrance of flood water.

Permanent barriers

Permanent barriers can include built up doorsteps, rendered brick walls and toughened glass barriers.

Developer contributions to flood defences

In some cases, it may be necessary for the developer to make a contribution to the improvement of flood defence provision that would benefit both the development in question and the local community.

Building design

The raising of floor levels within a development avoids damage occurring to the interior, furnishings and electrics in times of flood. If it has been agreed with the Environment Agency that, in a particular instance, the raising of floor levels is acceptable, they should be raised to 600mm above the maximum water level during a 1 in 100 year flood event plus climate change. This additional height that the floor level is raised is referred to as the 'freeboard'. The flood depth maps provide an indication of the scale of land raising that may be necessary.

Making the ground floor use of a building water compatible (for example a car park), is an effective way of raising living space above flood levels.

Putting a building on stilts is not considered an acceptable means of flood mitigation for new development. However it may be allowed in special circumstances if it replaces an existing solid building, as it can improve flood flow routes. In these cases attention should always be paid to safe access and egress and legal protection should be given to ensure the ground floor use is not changed.

Resistance and resilience

There may be instances where flood risk remains to a development. For example, where the use is water compatible, where an existing building is being changed, where residual risk remains behind defences, or where floor levels have been raised but there is still a risk in a 1 in 1000 year event. In these cases (and for existing development in the floodplain), additional measures can be put in place to reduce damage in a flood and increase the speed of recovery. These measures should not be relied on as the only mitigation method.

The 2007 document 'Improving the Flood Performance of New Buildings' provides further details on possible resistance and resilience measures²².

onsulting

²² Communities and Local Government (2007) Improving the Flood Performance of New Buildings – Flood Resilient Construction

This involves designing interiors to reduce damage caused by flooding, for example:

- Electrical circuitry installed at a higher level with power cables being carried down from the ceiling rather than up from the floor level
- Water-resistant materials for floors, walls and fixtures
- Resilience measures will be specific to the nature of flood risk, and as such will be informed and determined by the FRA.

H.2 Making development safe

Safe access and egress

The developer must ensure that safe access and egress is provided to an appropriate level for the type of development. This may involve raising access routes to a suitable level. Environment Agency guidance suggests that all development should have a dry access and egress in the 1 in 100 year event.

As part of the FRA, the developer should review the acceptability of the proposed access in consultation with the Environment Agency. For the purpose of the SFRA it is considered appropriate to provide a low hazard environment in access and egress routes associated with new housing developments.

It must be noted that the emergency services are unlikely to regard developments that increase the scale of any rescue that might be required as being safe.

Flood warning and evacuation

Emergency/evacuation plans should be in place for all properties, large and small, at residual risk of flooding; those developments which house vulnerable people (i.e. care homes and schools) will require more detailed plans.

More information on flood plans for development is provided in Section 6 of the User Guide.

H.3 Making Space for Water

Opportunities for River Restoration and Enhancement

All new development close to rivers should consider the opportunity presented to improve and enhance the river environment. Developments should look at opportunities for river restoration and enhancement as part of the development. Options include backwater creation, de-silting, in-channel habitat enhancement and removal of structures. When designed properly, such measures can have benefits such as reducing the costs of maintaining hard engineering structures, reducing flood risk, improving water quality and increasing biodiversity. Social benefits are also gained by increasing green space and access to the river.

Opportunities for Floodplain Restoration

It is an objective of PPS25 to safeguard land from development that may be required for current or future flood management. In areas of very high flood risk there may be a strong case for allowing previously developed sites to return to Functional Floodplain in urban areas where they can act to convey and store flood water and reduce risk to current development.

Buffer Strips

Developers should set back development from the landward toe of fluvial defences (or top of bank where defences do not exist) and this distance should be agreed with the Environment Agency. This provides a buffer strip to 'make space for water', allow additional capacity to accommodate climate change and ensure access to defences is maintained for maintenance purposes.

Offices at

Atherstone Doncaster Edinburgh Haywards Heath Limerick Newcastle upon Tyne Northallerton Northampton Saltaire Skipton Tadcaster Wallingford Warrington

Registered Office South Barn Broughton Hall SKIPTON North Yorkshire BD23 3AE

t:+44(0)1756 799919 e:info@jbaconsulting.co.uk

Jeremy Benn Associates Ltd Registered in England 3246693

Visit our website: www.jbaconsulting.co.uk